Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rewriting Greenland’s immigration history

30.05.2008
Thirty-six-year-old Professor Eske Willerslev, University of Copenhagen, and his team of fossil DNA researchers have done it a couple of times before: rewritten world history.

Most recently two months ago when he and his team discovered that the ancestors of the North American Indians were the first people to populate America, and that they came to the country more than 1,000 years earlier than originally assumed. And the evidence is, so to speak, quite tangible: DNA samples of fossilised human faeces found in deep caves in southern Oregon.

This time, focus is on Greenland, and the scientific evidence is DNA analyses of hair from the Disco Bay ice fjord area in north-west Greenland, which are well-preserved after 4,000 years in permafrost soil. The team’s discovery makes it necessary to review Greenland’s immigration history. Until now, science regarded it as a possibility that the earliest people in Greenland were direct ancestors of the present-day Greenlandic population.

It now turns out that the original immigrants on the maternal side, which is reflected in the mitochondrial DNA, instead came from a Siberian population whose closest present-day descendants come from the Aleutian Islands on the boundary between the Northern Pacific Ocean and the Bering Sea and the Seriniki Yuit in north-east Siberia. Discovered in more recent times by the Dane Vitus Bering in 1741, the Aleutian Islands today include some 300 islands spanning 1,900 km from Alaska in the USA to the Kamchatka peninsula in Russia.

... more about:
»Aleutian »DNA »Greenland »Greenlandic »Willerslev »hair

“They must have crossed the ice from the Aleutian Islands via Alaska and Canada and then on to Greenland. We have always known that the first immigrants came to Greenland approx. 4,500 years ago, because tools from that time have been found. But what we did not know was that they probably came via the Aleutian Islands, which our DNA research now shows. The project was actually close to being shelved. Originally, I was in the most northern part of Greenland with Claus Andreasen from the National Museum of Greenland, Nuuk, looking for DNA traces. It was a total failure. But in another context, I found out that archaeologist Bjarne Grønnow from the National Museum of Denmark, Copenhagen, had made some excavations at the Qeqertasussuk settlement in the northern part of West Greenland in the 1980s. And then, among all the samples taken from the frozen culture layers on the site, I suddenly found a tuft of hair which I analysed together with my colleague Tom Gilbert,” says Eske Willerslev.

‘The forgotten Greenlandic hair’ from the samples was subsequently analysed for so-called mitochondria. They are the genes on the maternal side, a kind of cellular power plant, and they are well-suited for comparative DNA studies of mammals, including humans. The Willerslev team then checked the results of the analysis of the Greenlandic hair against an international DNA database and the database came up with the eastern part of Siberia and the Aleutian Islands, which is populated by a group that has peopled other places in the Arctic area.

Another interesting finding is that there is no connection between this DNA mass and the most recent immigration to Greenland, the Thule culture, the ancestors of modern Greenlandic Inuit.

“Our findings prove that humans moved to other places far earlier than what is normally assumed today. We may only have studied the mitochondria – the female part, but it is the first time ever that someone has succeeded in sequencing the entire mitochondrial genome from an extinct human. Our next project will be to raise funds for recreating what is technically known as the core genome from the tuft of hair, in other words the first full picture of the genetic material of an extinct human. Today, this is technically possible, and it may tell us where the paternal line came from in the earliest immigration to Greenland, and, for example, the eye colour of these early people. The paternal line may very well come from a totally different place,” says Eske Willerslev, who will shortly publish his autobiographical book ‘Fra pelsjæger til professor – en personlig rejse gennem fortidens dna-mysterier’ (From fur hunter to professor – a personal journey through the DNA mysteries of the past).

Professor Eske Willerslev | alfa
Further information:
http://www.ku.dk/english/news/fossil_dna_greenland.htm

Further reports about: Aleutian DNA Greenland Greenlandic Willerslev hair

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>