Research reveals molecular fingerprint of cocaine addiction

The identified changes are more numerous and long-lasting than previously thought, which may provide a biological explanation for why cocaine addiction is so difficult to overcome, according to Scott E. Hemby, Ph.D. of Wake Forest University School of Medicine, senior author of the study.

Results from the study are reported online today (May 27) in the journal Molecular Psychiatry and detail the effect of long-term cocaine intake on the amount and activity of thousands of proteins in monkeys. Monkeys are an ideal animal for studying addiction because they share considerable behavioral, anatomical and biochemical similarities with humans. About 2.4 million Americans currently use cocaine, according to estimates.

The researchers used state-of-the-art “proteomic” technology, which enables the simultaneous analysis of thousands of proteins, to compare the “proteome” (all proteins expressed at a given time) between a group of monkeys that self-administered cocaine and a group that did not receive the drug. Leonard Howell, Ph.D., with Emory University School of Medicine, who conducted the monkey studies, was a co-researcher. The study provides a comprehensive assessment of biochemical changes occurring in the cocaine addicted brain, Hemby said.

“The changes we identified are profound and affect the structure, metabolism and signaling of neurons,” said lead author Nilesh Tannu, M.D. “It is unlikely that these types of changes are easily reversible after drug use is discontinued, which may explain why relapse occurs.”

Hemby said that the development of medications to treat addictive disorders is guided in large part by our understanding of the brain mechanisms that produce the euphoric effects of the drugs. It is equally important to understand the damage that long-term drug use causes to brain cells so medications can be developed to reverse those effects and restore normal cell function in the brain.

The changes identified in the current study point to significant and likely long-lasting damage to brain cells as a result of cocaine abuse. “The duration of use and the amount of drug consumed that lead to such damage is currently not known, but is critical for understanding the long-term health consequences of cocaine abuse and determining the necessary modes of treatment,” said Hemby. “We hope that the information generated from the study will also serve an educational purpose as a deterrent to cocaine use.”

Media Contact

Karen Richardson EurekAlert!

More Information:

http://www.wfubmc.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors