Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How to construct a “firefly” worm

28.05.2008
Research describing a new modified luminescent worm that allows, for the first time, to measure, in real time, the metabolism of an entire living organism has just been published in the journal BMC Physiology1.

The key behind this capacity relies in the fact that the luminescence is produced using the animal’s available energy, which reflects its metabolism that, as such, can be extrapolated from measuring the emitted light. The new altered Caenorhabditis elegans (C.elegans) - which is widely used to study human genes - by detecting metabolic changes in the exact moment these occur, will help to understand the cause behind these changes and contribute to understand C. elegans (and human) genes, as well as the mechanisms behind disease and health. In fact, Alzheimer’s, Parkinson’s disease and different types of stress – such as starvation and oxygen deprivation - are just some of the phenomena characterised by visible metabolic changes that can now be further investigated using this new animal model.

Caenorhabditis elegans (C.elegans) is a animal model used to study human genes and their function due to the fact that part of its genome has been conserved throughout evolution, and is shared by humans. But although much research has been done on the worm’s genes, much still needs to be learned specially among the genes behind physiology, which - contrary to those linked to vital functions or body shape - can be difficult to identify, since abnormalities in them not always result in visible alterations.

Adenosine triphosphate (or ATP) is a high-energy molecule used as source of energy by the body cells, where its levels are directly linked to the organism’s metabolism. This means that alterations in the body ATP can help to reveal metabolic problems and, in fact, ATP changes are associated with a series of problems including neurodegenerative diseases and stress.

It was this link between ATP, metabolism and disease that led Cristina Lagido, Jonathan Pettitt, Aileen Flett and L. Anne Glover from the Institute of Medical Sciences at the University of Aberdeen, UK to hypothesise that ATP levels could be used as a physiological parameter in C.elegans to complement the genetic data and help to further understand its (as well as the human) genome.

With this aim in mind the researchers went to create a modified luminescent C.elegans expressing the protein firefly luciferase that, as the name indicates, comes from fireflies where it produces light by using ATP to transform a pigment called luciferin.

The idea was, that, when luciferin (that does not exist in the animal) was supplied in excess, the animal’s luminescence would be directly related to the amount of ATP existent in the worm. And, since C. elegans is transparent, the luminescence could then be measured allowing the researchers to calculated ATP levels and, consequently, follow the animal’s metabolism in real time.

But first, to confirm that the worm’s luminescence was indeed related to its ATP levels, the animals were put in conditions known to affect this molecule quantity – whether by exposing them to the toxic compound sodium azide (which is a known agent of stress) or by directly inhibiting their ATP production – and their luminescence was measured. In both cases, luminescence was significantly reduced as expected and with azide, increased levels of this compound resulted in reduced luminescent further supporting the link ATP-luminescence. Furthermore, because the effects of non-lethal doses of sodium azide – like the ones used in these experiments - are known to be reversible, after the measurements with azide the animals were washed and their luminescence measured again to be found that the emitted light was back to normal levels. Final support to the link ATP levels-luminescence came from the fact that ATP variations found in the azide experiments, agreed with measurements done by others studying similar conditions, but using different methods.

These results confirmed that Lagido, Glover and colleagues’ modified C. elegans was, in fact, a reliable model to follow the worm’s metabolism in real time. This was the first time that it was shown that luminescence could be used to assess ATP levels in a living multicellular organism.

What is most interesting about Lagido, Glover and colleagues’ modified C.elegans is how, despite its apparently simplicity, this new worm is a potentially incredible research tool to understand better the many genetic pathways involved in C. elegans physiology, including those participating in metabolism, ageing, disease and stress response. Cristina Lagido – a Portuguese researcher – and colleagues’ work has created a unique tool to link physiology and genetics in an organism which – most importantly- shares many of its genes with us humans.

Piece researched and written by:
Catarina Amorim (catarina.amorim at linacre.ox.ac.uk)
1 BMC Physiology 2008, 8:7
“Bridging the phenotypic gap: real-time assessment of mitochondrial function and metabolism of the nematode Caenorhabditis elegans”
Contacts for the authors of the original paper
Cristina Lagido - c.lagido@abdn.ac.uk
L. Anne Glover l.a.glover@abdn.ac.uk

Catarina Amorim | alfa
Further information:
http://www.biomedcentral.com/content/pdf/1472-6793-8-7.pdf

Further reports about: ATP Azide Glover Lagido Stress elegans genes luminescence metabolism modified

More articles from Life Sciences:

nachricht World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes
17.07.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Plant mothers talk to their embryos via the hormone auxin
17.07.2018 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>