Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large-scale community protein annotation - WikiProteins

28.05.2008
Today sees the launch of a new collaborative website initially focusing on proteins and their role in biology and medicine.

The WikiProfessional technology underlying the site has been developed based upon the collaborative Wikipedia approach. Described in BioMed Central’s open access journal Genome Biology, WikiProteins provides a method for community annotation on a huge scale.

The article is written by Barend Mons of the Erasmus Medical Center in Rotterdam, and the Leiden University Medical Center, The Netherlands, and his co-authors from Brazil, The Netherlands, Switzerland, the UK and the USA. They include Amos Bairoch of UniProt, Michael Ashburner of GO and Jimmy Wales, the founder of Wikipedia.

The source material for WikiProteins comes from a mixture of existing authoritative databases (such as the Unified Medical Language System, UniProtKB/Swiss-Prot, IntAct and GO), supplemented by concepts mined from scientific papers published in public literature databases. The automated data mining identifies ‘facts’ in these available resources, such as protein functions or protein-disease relationships. This process created over one million biomedical concept clouds – called ‘Knowlets’ – around each individual concept. The developers of the site now hope that many researchers will follow their call to annotate, via WikiProteins, the Knowlets for which they are leading experts. The method enables researchers to add data even from sources that are not openly available, such as from journals only accessible via publishers’ databases, immensely enhancing the potential for comprehensive coverage. Each page of text called up via the system is automatically indexed and concepts are connected to the WikiSpace, so that their definition comes up and the information can be edited directly from the page.

... more about:
»Protein »WikiProtein

The resulting data in the Wiki is fully and freely accessible to the public, and entries can be annotated by any registered user. Mons said: “We here call on a million minds to annotate a million concepts and collect new facts from full-text literature with the immediate reward of collaborative knowledge discovery and recognition of Wiki-contributions to the scientific community.”

Launched in 2001, Wikipedia is a freely available, collaboratively created online encyclopedia. WikiProteins maps to Wikipedia and has been created as part of the WikiProfessional initiative and there are plans to add new workspaces such as WikiPeople (an intellectual networking environment), and WikiChemicals for other communities.

A preview of the WikiProtein technology is available at http://conceptweblinker.wikiprofessional.org/default.py?url=nph-proxy.cgi/010000A/http/genomebiology.wikiprofessional.org/monsarticle.htm

Charlotte Webber | alfa
Further information:
http://genomebiology.com/
http://www.biomedcentral.com/

Further reports about: Protein WikiProtein

More articles from Life Sciences:

nachricht Happy hour for time-resolved crystallography
17.09.2019 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Too much of a good thing: overactive immune cells trigger inflammation
16.09.2019 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>