Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How fast does a stressed cell react?

27.05.2008
When subjected to stress, such as an alteration to its environment, a cell reacts more or less rapidly in order to ensure its survival. In yeast, this takes place through a series of reactions that are well-known, but whose dynamics had never been studied.

This has now been done by CNRS researcher Pascal Hersen (1) and the team led by Sharad Ramanathan at the Center for Systems Biology (Harvard University). Using a simple and innovative measuring device that they developed, the researchers have confirmed the hypothesis that above a certain stimulation frequency, the yeast cell no longer responds to osmotic stress (2).

They are now able to measure the rate of reaction to such stress, and above all, modify the reaction rate by eliminating certain genes. This work opens up new prospects for biological engineering. The idea is to construct cells with novel biological functions and whose dynamics can be controlled. These findings have been published on line on the web site of the journal /PNAS/.

Place a little salt on a cell and it immediately shrinks. This phenomenon is caused by the difference in salinity inside and outside the cell. To restore equilibrium between the concentrations, the cell releases some water, which reduces its size. In order to return to normal size, the cell undergoes a series of reactions that are essential for the efficient working of its regulation and adaptation processes. In the yeast Saccharomyces cerevisiae, a model eukaryotic (3) system, such a cascade has been well described. However, its dynamics remain poorly understood. A cell needs to react at the right rate in order to ensure its survival. It is therefore essential to understand the dynamics of cell response to environmental stress.

... more about:
»Dynamic »Membrane »reaction »yeast

To this end, Pascal Hersen, CNRS researcher at the Complex Systems and Matter Laboratory (CNRS / Université Paris 7), and his US colleagues decided to study how and at what rate yeast responds and adapts to environmental stress. Using a simple device that makes it possible to follow the behavior of individual cells, they created an environment which periodically brings about disequilibrium. In this way they were able to determine the dynamic properties of cell response.

Their first observation was that when the frequency is too high, the size of the cells doesn't change. There simply isn't enough time for the transfer of water through the cell membrane to take place. On the other hand, for lower frequencies (input of disequilibrium every 10 seconds), the cells shrink and swell periodically, faithfully following the fluctuations of the disequilibrium. However, in this range of frequencies, there isn't enough time for the cascade of reactions to be activated between two cycles. There is thus a decoupling between the mechanical response and the biological response. It is only when the period is more than around ten minutes that the biological reactions are activated and follow one another 'naturally', while at the same time being coupled to the mechanical response of the cell. This frequency is therefore characteristic of the response dynamics in yeast, which is unable to faithfully follow changes in its environment that are too rapid, i.e. a period of less than ten minutes.

Finally, by eliminating certain genes from the yeast, the researchers showed that this cascade can be significantly slowed down. They now hope to understand how the quantity and nature of the proteins affects the dynamics of these reactions, and how they might eventually be able to speed them up or slow them down. Being able to manipulate them in this way opens up new prospects in synthetic biology (4) for the design of cells with novel functions, whose dynamics of response to stress can be controlled.

(1) Unité Matière et systèmes complexes (MSC, CNRS / Université Paris 7).

(2) Osmotic stress is caused by a difference in concentration of solute (such as salt) on either side of the cell membrane. Osmosis is the name given to the phenomenon of a return to equilibrium by diffusion of water through the membrane.

(3) A living organism which has a nucleus separated from the cytoplasm by a membrane and containing DNA.

(4) Synthetic biology is the engineering of living organisms. It consists in synthesizing complex systems based on biology which carry out functions that don't exist in nature.

Julien Guillaume | alfa
Further information:
http://www.cnrs-dir.fr
http://www.pnas.org/cgi/content/abstract/0710770105v1

Further reports about: Dynamic Membrane reaction yeast

More articles from Life Sciences:

nachricht Hopkins researchers ID neurotransmitter that helps cancers progress
25.04.2019 | Johns Hopkins Medicine

nachricht Trigger region found for absence epileptic seizures
25.04.2019 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>