Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How fast does a stressed cell react?

27.05.2008
When subjected to stress, such as an alteration to its environment, a cell reacts more or less rapidly in order to ensure its survival. In yeast, this takes place through a series of reactions that are well-known, but whose dynamics had never been studied.

This has now been done by CNRS researcher Pascal Hersen (1) and the team led by Sharad Ramanathan at the Center for Systems Biology (Harvard University). Using a simple and innovative measuring device that they developed, the researchers have confirmed the hypothesis that above a certain stimulation frequency, the yeast cell no longer responds to osmotic stress (2).

They are now able to measure the rate of reaction to such stress, and above all, modify the reaction rate by eliminating certain genes. This work opens up new prospects for biological engineering. The idea is to construct cells with novel biological functions and whose dynamics can be controlled. These findings have been published on line on the web site of the journal /PNAS/.

Place a little salt on a cell and it immediately shrinks. This phenomenon is caused by the difference in salinity inside and outside the cell. To restore equilibrium between the concentrations, the cell releases some water, which reduces its size. In order to return to normal size, the cell undergoes a series of reactions that are essential for the efficient working of its regulation and adaptation processes. In the yeast Saccharomyces cerevisiae, a model eukaryotic (3) system, such a cascade has been well described. However, its dynamics remain poorly understood. A cell needs to react at the right rate in order to ensure its survival. It is therefore essential to understand the dynamics of cell response to environmental stress.

... more about:
»Dynamic »Membrane »reaction »yeast

To this end, Pascal Hersen, CNRS researcher at the Complex Systems and Matter Laboratory (CNRS / Université Paris 7), and his US colleagues decided to study how and at what rate yeast responds and adapts to environmental stress. Using a simple device that makes it possible to follow the behavior of individual cells, they created an environment which periodically brings about disequilibrium. In this way they were able to determine the dynamic properties of cell response.

Their first observation was that when the frequency is too high, the size of the cells doesn't change. There simply isn't enough time for the transfer of water through the cell membrane to take place. On the other hand, for lower frequencies (input of disequilibrium every 10 seconds), the cells shrink and swell periodically, faithfully following the fluctuations of the disequilibrium. However, in this range of frequencies, there isn't enough time for the cascade of reactions to be activated between two cycles. There is thus a decoupling between the mechanical response and the biological response. It is only when the period is more than around ten minutes that the biological reactions are activated and follow one another 'naturally', while at the same time being coupled to the mechanical response of the cell. This frequency is therefore characteristic of the response dynamics in yeast, which is unable to faithfully follow changes in its environment that are too rapid, i.e. a period of less than ten minutes.

Finally, by eliminating certain genes from the yeast, the researchers showed that this cascade can be significantly slowed down. They now hope to understand how the quantity and nature of the proteins affects the dynamics of these reactions, and how they might eventually be able to speed them up or slow them down. Being able to manipulate them in this way opens up new prospects in synthetic biology (4) for the design of cells with novel functions, whose dynamics of response to stress can be controlled.

(1) Unité Matière et systèmes complexes (MSC, CNRS / Université Paris 7).

(2) Osmotic stress is caused by a difference in concentration of solute (such as salt) on either side of the cell membrane. Osmosis is the name given to the phenomenon of a return to equilibrium by diffusion of water through the membrane.

(3) A living organism which has a nucleus separated from the cytoplasm by a membrane and containing DNA.

(4) Synthetic biology is the engineering of living organisms. It consists in synthesizing complex systems based on biology which carry out functions that don't exist in nature.

Julien Guillaume | alfa
Further information:
http://www.cnrs-dir.fr
http://www.pnas.org/cgi/content/abstract/0710770105v1

Further reports about: Dynamic Membrane reaction yeast

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>