Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientists flick genetic switch; may lead to new disease treatments

04.07.2002


Genes that are inappropriately turned on play a critical role in triggering some diseases. For researchers, the trick is learning how to deactivate these genes to treat illnesses. In a step toward reaching that goal, scientists at Stanford University Medical Center have developed a gene-therapy technique to switch off genes in mice. The finding could potentially lead to ways of treating such diseases as cancer, hepatitis C and AIDS.



In plants and lower organisms such as flies or worms, researchers can experimentally switch off genes by inserting RNA. Genes normally produce RNA molecules, which the cell uses as a template to create proteins. The injected RNA interferes with the usual order of events and prevents protein from being made - effectively shutting down the gene.

"RNA inhibition has been shown to work in lower organisms, but there was some question about whether it would work in mammals," said Mark Kay, MD, PhD, professor of genetics and pediatrics at Stanford.


Initial attempts to use RNA inhibition in mice were unsuccessful, but when Anton McCaffrey, PhD, joined Kay’s lab as a postdoctoral fellow he decided to give RNA inhibition another chance. His results will be published in the July 4 issue of Nature.

To observe the RNA inhibition process, McCaffrey injected mice with a firefly gene called luciferase that makes a light-producing protein. In half the mice, he also injected RNA that inhibits luciferase production. In mice receiving both luciferase and the RNA, whole-body scans showed 80 percent to 90 percent less light compared to mice that received the luciferase gene alone.

In a related experiment, McCaffrey hooked the luciferase gene to a small part of a gene from the hepatitis C virus and injected the hybrid gene into mice along with RNA that is specific to the DNA found in hepatitis C. Once again, mice that received both the gene and the RNA produced significantly less light than mice receiving only the luciferase gene. This experiment suggests that RNA inhibition could be used to deactivate genes from a virus such as hepatitis C or HIV, Kay said. By deactivating genes used by the virus to replicate, researchers could halt an infection in its tracks.

Kay added that although these results look promising, they rely on injected RNA. "RNA doesn’t last long in cells," he said. The problem is that in order for the RNA inhibition to work, two RNA molecules must be paired to form a double-stranded molecule. An easier approach would be to inject DNA, which is more durable than RNA, and have the DNA produce the proper RNA. Usual methods of injecting DNA, however, produce single-stranded RNA, which is useless for inhibition - a problem the scientists have worked to solve.

McCaffrey and Kay devised a way around this dilemma after consulting with a colleague. The team injected mice with a DNA molecule that produces an unusual RNA which doubles back on itself like a hairpin to make a single, double-stranded molecule. Injecting this novel RNA into mice was as effective at inhibiting the luciferase gene as injecting double-stranded RNA. What’s more, even after the hairpin RNA breaks down, the DNA remains in the cell and continues producing new RNA.

Kay said that this initial work is a proof of concept. "The ultimate goal is to use this to treat a disease," Kay said. "We can do this by placing these molecules into standard gene-therapy vectors." As examples, he said researchers could deactivate virus genes or genes involved in cancer. Kay added that methods of delivering DNA to cells are currently being tested and could potentially be used to provide RNA inhibition, staving off or even preventing some diseases.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu
http://med-www.stanford.edu/MedCenter/MedSchool/

More articles from Life Sciences:

nachricht Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination
13.07.2020 | Kanazawa University

nachricht Researchers present concept for a new technique to study superheavy elements
13.07.2020 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron cryo-microscopy: Using inexpensive technology to produce high-resolution images

Biochemists at Martin Luther University Halle-Wittenberg (MLU) have used a standard electron cryo-microscope to achieve surprisingly good images that are on par with those taken by far more sophisticated equipment. They have succeeded in determining the structure of ferritin almost at the atomic level. Their results were published in the journal "PLOS ONE".

Electron cryo-microscopy has become increasingly important in recent years, especially in shedding light on protein structures. The developers of the new...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications

13.07.2020 | Physics and Astronomy

Polarization of Br2 molecule in vanadium oxide cluster cavity and new alkane bromination

13.07.2020 | Life Sciences

Researchers present concept for a new technique to study superheavy elements

13.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>