Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stanford scientists flick genetic switch; may lead to new disease treatments

04.07.2002


Genes that are inappropriately turned on play a critical role in triggering some diseases. For researchers, the trick is learning how to deactivate these genes to treat illnesses. In a step toward reaching that goal, scientists at Stanford University Medical Center have developed a gene-therapy technique to switch off genes in mice. The finding could potentially lead to ways of treating such diseases as cancer, hepatitis C and AIDS.



In plants and lower organisms such as flies or worms, researchers can experimentally switch off genes by inserting RNA. Genes normally produce RNA molecules, which the cell uses as a template to create proteins. The injected RNA interferes with the usual order of events and prevents protein from being made - effectively shutting down the gene.

"RNA inhibition has been shown to work in lower organisms, but there was some question about whether it would work in mammals," said Mark Kay, MD, PhD, professor of genetics and pediatrics at Stanford.


Initial attempts to use RNA inhibition in mice were unsuccessful, but when Anton McCaffrey, PhD, joined Kay’s lab as a postdoctoral fellow he decided to give RNA inhibition another chance. His results will be published in the July 4 issue of Nature.

To observe the RNA inhibition process, McCaffrey injected mice with a firefly gene called luciferase that makes a light-producing protein. In half the mice, he also injected RNA that inhibits luciferase production. In mice receiving both luciferase and the RNA, whole-body scans showed 80 percent to 90 percent less light compared to mice that received the luciferase gene alone.

In a related experiment, McCaffrey hooked the luciferase gene to a small part of a gene from the hepatitis C virus and injected the hybrid gene into mice along with RNA that is specific to the DNA found in hepatitis C. Once again, mice that received both the gene and the RNA produced significantly less light than mice receiving only the luciferase gene. This experiment suggests that RNA inhibition could be used to deactivate genes from a virus such as hepatitis C or HIV, Kay said. By deactivating genes used by the virus to replicate, researchers could halt an infection in its tracks.

Kay added that although these results look promising, they rely on injected RNA. "RNA doesn’t last long in cells," he said. The problem is that in order for the RNA inhibition to work, two RNA molecules must be paired to form a double-stranded molecule. An easier approach would be to inject DNA, which is more durable than RNA, and have the DNA produce the proper RNA. Usual methods of injecting DNA, however, produce single-stranded RNA, which is useless for inhibition - a problem the scientists have worked to solve.

McCaffrey and Kay devised a way around this dilemma after consulting with a colleague. The team injected mice with a DNA molecule that produces an unusual RNA which doubles back on itself like a hairpin to make a single, double-stranded molecule. Injecting this novel RNA into mice was as effective at inhibiting the luciferase gene as injecting double-stranded RNA. What’s more, even after the hairpin RNA breaks down, the DNA remains in the cell and continues producing new RNA.

Kay said that this initial work is a proof of concept. "The ultimate goal is to use this to treat a disease," Kay said. "We can do this by placing these molecules into standard gene-therapy vectors." As examples, he said researchers could deactivate virus genes or genes involved in cancer. Kay added that methods of delivering DNA to cells are currently being tested and could potentially be used to provide RNA inhibition, staving off or even preventing some diseases.


Stanford University Medical Center integrates research, medical education and patient care at its three institutions - Stanford University School of Medicine, Stanford Hospital & Clinics and Lucile Packard Children’s Hospital at Stanford. For more information, please visit the Web site of the medical center’s Office of Communication & Public Affairs at http://mednews.stanford.edu.

Amy Adams | EurekAlert!
Further information:
http://mednews.stanford.edu
http://med-www.stanford.edu/MedCenter/MedSchool/

More articles from Life Sciences:

nachricht Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides
16.07.2018 | Tokyo Institute of Technology

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>