Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bone Cells Found to Influence Blood Stem Cell Replication and Migration

26.05.2008
Using a novel investigatory technique, researchers at the Joslin Diabetes Center have established that osteoblasts, cells responsible for bone formation, are also directly involved in the proliferation and expansion of blood-forming hematopoietic stem cells.

The finding, published online in May in the journal Blood, improves understanding of how such stem cells work and could have implications for the future of bone marrow and peripheral blood progenitor cell transplants, which are used in the treatment of a variety of illnesses – including leukemia, lymphoma and immunodeficiency.

The success of these transplants depends on the ability of intravenously infused blood-forming stem cells, which normally reside predominantly in the bone marrow, to accurately and efficiently migrate from the blood to the marrow of the transplant recipient and, once there, to repopulate their pool of mature blood cells.

“In normal individuals, blood-forming stem cells continually seed the production of all cells in the adult blood system. Appropriate regulation of stem cell activity is essential for maintaining this normal cell replacement, and for supporting repair of the blood system after injury,” said lead author Amy J. Wagers, Ph.D., Principal Investigator in the Joslin Section on Developmental and Stem Cell Biology, principal faculty member at the Harvard Stem Cell Institute and Assistant Professor of Stem Cell and Regenerative Biology at Harvard University.

The signals that regulate stem cells remain largely mysterious, but some have been proposed to emanate from specialized cells in the bone marrow environment which form a supportive “stem cell niche” to communicate physiologically relevant signals to stem cells.

A number of earlier studies had implicated bone-lining osteoblasts as important “niche cells.” However, these earlier studies were complicated by the presence of other cell types within the bone marrow. As a result, whether osteoblasts in particular could modulate blood-forming stem cell activity remained controversial.

To clarify this issue, Wagers and co-author Shane R. Mayack, Ph.D., Research Fellow in the Joslin Section on Development and Stem Cell Biology, developed a strategy to isolate osteoblasts and then exposed these osteoblasts to bone marrow stem and progenitor cells in vitro to test their ability to alter stem cell proliferation and function.

“The idea was to deconstruct the complexity of the marrow environment to find out whether osteoblasts alone were sufficient to regulate stem cell activity,” said Wagers.

In their experiment, the researchers took osteoblasts from normal mice and from mice treated with drugs designed to cause stem cells to proliferate and migrate – a process known as “mobilization.” They then exposed the isolated osteoblasts to bone marrow progenitor cells from normal mice in vitro.

The bone marrow cells exposed to the osteoblasts taken from the treated mice proliferated rapidly, while those from untreated mice were inhibited from replicating.

According to Wagers, this effect demonstrates that the osteoblast cells are capable of communicating to the stem cells the physiological signals provided by the drugs.

“It demonstrates that osteoblasts act as functional niche cells capable of directly regulating stem cell activity,” she said. “This work provides mechanistic insight into the common process of stem cell mobilization and makes available a new way to discover novel pathways that regulate the expansion of hematopoietic stem cells.”

“Additionally, this study establishes a new paradigm for examining more generally how ‘support cells’ in the body influence stem cell activity,” she said.

The new finding also provides an opportunity to study potential changes in niche cells that may contribute to diseases such as leukemia or bone marrow failure, said Wagers.

According to Wagers, future studies will seek to identify the molecular factors necessary for the communication between the osteoblasts and stem cells and to try and understand how changes in that communication system may play a role in the development of disease.

The work was supported in part by grants from the Smith Family Medical Foundation, Paul F. Glenn Laboratories, a Burroughs Wellcome Fund Career Award and the National Institutes of Health.

About Joslin Diabetes Center
Joslin Diabetes Center is the world’s largest diabetes clinic, diabetes research center and provider of diabetes education. Joslin is dedicated to ensuring people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure for the disease. Founded in 1898 by Elliott P. Joslin, M.D., Joslin is an independent nonprofit institution affiliated with Harvard Medical School. For more information on Joslin, call 1-800-JOSLIN-1 or visit http://www.joslin.org.

Kira Jastive | newswise
Further information:
http://www.joslin.org

Further reports about: Diabetes Osteoblast Stem Wagers blood blood-forming marrow transplant

More articles from Life Sciences:

nachricht Dissolving protein traffic jam at the entrance of mitochondria
23.05.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Producing tissue and organs through lithography
23.05.2019 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>