Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Biological Classification of Ovarian Cancer - A Possibility for Better Survival

21.05.2008
A thesis from The Sahlgrenska Academy in Sweden shows that it might be possible to predict with great probability which women with ovarian cancer will survive the disease before painful treatment with antineoplastic agents.

A better prognosis would considerably improve the quality of life of patients since the treatment could be made more effective and thereby result in fewer side effects.

"By looking at biological events we have found differences that in future could be used as markers to make a more secure prognosis for women with ovarian cancer", says biologist Karolina Partheen, who has written the thesis.

Ovarian cancer is an unusual disease in Sweden. But despite few persons being afflicted by it, it is the fifth most common cause of women dying of cancer in our country. When tumors are discovered there are a number of factors that influence what type of treatment the patient will undergo. Patients with a similar prognosis can have completely different experiences. This is a big problem within cancer care today, in the treatment of ovarian cancer and in the treatment of other forms of cancer too. The majority of patients undergo insufficient treatment resulting in serious side effects, which represents a big cost for both patients and healthcare.

... more about:
»Partheen »Protein »ovarian »tumors

"In the long run only half of all patients with ovarian cancer respond to the medication they are subjected to. What causes the difference in the way patients respond to antineoplastic agents is not completely clear today, but an underlying cause could be that the tumors have different biological characteristics", says Karolina Partheen.

Cancer is caused by something changing in our gene pool, our genes, which make the body's own cells start dividing uncontrollably. Genes are copied to mRNA that later function as templates from which proteins can be built in a cell. Certain proteins speed up the cell's division time, while others put the brakes on it. So if there is too much or too little of some protein, or if it becomes wrongly constructed, this can lead to cancer.

In her thesis, Karolina Partheen has measured gene copies and how much mRNA or protein has built in different tumors that have the same prognosis. This is done in order to then compare whether there are any differences between tumors from patients who survive or die from the disease.

"One of the most interesting discoveries in the thesis was a profile that seems to be able to distinguish a particular group of patients where everyone survives. In future, if these patients can be detected before treatment with antineoplastic agents, they would be able to get an alternative treatment that results in fewer side effects. Patients that do not correspond to our profile can receive standard treatment with some further medication from the start and tighter follow-ups. In this way the treatment becomes more effective, and side effects are minimised, as well as costs reduced for any over-treatment of patients", says Karolina Partheen.

The thesis was written by:
Biologist Karolina Partheen, telephone: 031-342 78 55, 0736-939 486, e-mail: karolina.partheen@oncology.gu.se
Supervisor:
Adjunct Professor György Horvath, telephone: 031-342 7956, e-mail: gyorgy.horvath@oncology.gu.se
Press officer, The Sahlgrenska Academy at University of Gothenburg:
Ulrika Lundin; Phone: +46 31 786 3869; ulrika.lundin@sahlgrenska.gu.se

Ulrika Lundin | idw
Further information:
http://hdl.handle.net/2077/10126
http://www.vr.se

Further reports about: Partheen Protein ovarian tumors

More articles from Life Sciences:

nachricht First SARS-CoV-2 genomes in Austria openly available
03.04.2020 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch
03.04.2020 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>