New Biological Classification of Ovarian Cancer – A Possibility for Better Survival

A better prognosis would considerably improve the quality of life of patients since the treatment could be made more effective and thereby result in fewer side effects.

“By looking at biological events we have found differences that in future could be used as markers to make a more secure prognosis for women with ovarian cancer”, says biologist Karolina Partheen, who has written the thesis.

Ovarian cancer is an unusual disease in Sweden. But despite few persons being afflicted by it, it is the fifth most common cause of women dying of cancer in our country. When tumors are discovered there are a number of factors that influence what type of treatment the patient will undergo. Patients with a similar prognosis can have completely different experiences. This is a big problem within cancer care today, in the treatment of ovarian cancer and in the treatment of other forms of cancer too. The majority of patients undergo insufficient treatment resulting in serious side effects, which represents a big cost for both patients and healthcare.

“In the long run only half of all patients with ovarian cancer respond to the medication they are subjected to. What causes the difference in the way patients respond to antineoplastic agents is not completely clear today, but an underlying cause could be that the tumors have different biological characteristics”, says Karolina Partheen.

Cancer is caused by something changing in our gene pool, our genes, which make the body's own cells start dividing uncontrollably. Genes are copied to mRNA that later function as templates from which proteins can be built in a cell. Certain proteins speed up the cell's division time, while others put the brakes on it. So if there is too much or too little of some protein, or if it becomes wrongly constructed, this can lead to cancer.

In her thesis, Karolina Partheen has measured gene copies and how much mRNA or protein has built in different tumors that have the same prognosis. This is done in order to then compare whether there are any differences between tumors from patients who survive or die from the disease.

“One of the most interesting discoveries in the thesis was a profile that seems to be able to distinguish a particular group of patients where everyone survives. In future, if these patients can be detected before treatment with antineoplastic agents, they would be able to get an alternative treatment that results in fewer side effects. Patients that do not correspond to our profile can receive standard treatment with some further medication from the start and tighter follow-ups. In this way the treatment becomes more effective, and side effects are minimised, as well as costs reduced for any over-treatment of patients”, says Karolina Partheen.

The thesis was written by:
Biologist Karolina Partheen, telephone: 031-342 78 55, 0736-939 486, e-mail: karolina.partheen@oncology.gu.se
Supervisor:
Adjunct Professor György Horvath, telephone: 031-342 7956, e-mail: gyorgy.horvath@oncology.gu.se
Press officer, The Sahlgrenska Academy at University of Gothenburg:
Ulrika Lundin; Phone: +46 31 786 3869; ulrika.lundin@sahlgrenska.gu.se

Media Contact

Ulrika Lundin idw

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors