Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A fungus that produces biofuels from plants

21.05.2008
The fungus Trichoderma reesei optimally breaks down plants into simple sugars, the basic components of ethanol. The fungus's genome has recently been sequenced by researchers from the Architecture et fonction des macromolécules biologiques laboratory (CNRS/Université de la Méditerranée and Universite de Provence), working together with an American team.

The results, published online on the Nature biotechnology (1) website, show that only a few genes are responsible for the fungus's enzymatic activity. They offer new avenues for the fabrication of second generation biofuels from plant waste.

The fungus Trichoderma reesei was discovered in the South Pacific during the Second World War, where it was damaging American military equipment and was defeating every attempt at protecting the equipment with cotton cloth. The fungus contains a number of enzymes, cellulases, with potent catalytic properties that break down plants. It is considered to be the world's most efficient fungus at breaking down the cellulose in plant walls into simple sugars, which it feeds on.

After fermentation, simple sugars can easily be transformed into biofuels such as ethanol. First generation agrofuels, made from grain or from beet, have certain limitations. Second generation biofuels, made from foresting and agricultural waste (tree cuttings, corn cobs, straw, etc.) do not have these limitations, as they complement pre-established agricultural activity, have a better CO2 balance, et don't interfere with the agro-alimentary cycle. To produce these second generation biofuels, industrialists are looking to develop fungus strains capable of producing a cocktail of cellulases and hemicellulases at a concentration of 50 g/l. Trichoderma reesei is the choice organism for most projects in this field.

... more about:
»Biofuels »Trichoderma »enzyme »fungus »reesei

Bernard Henrissat's glycogenomic team at the Architecture et fonction des macromolécules biologiques lab specializes in the study of enzymes which break down sugars (2). In order to learn more about the incredible enzymatic activity of Trichoderma reesei, they assayed its genome. Contrary to their expectations, they found that the fungus has only a small number of genes which code for cellulases (hemicellulases and pectinases), many fewer in fact than in usually found in fungi capable of breaking down plant walls. Moreover, the fungus has no or very little enzymatic activity allowing the digestion of specific components in the wall.

This was first interpreted as bad news, but the limitations of this model organism are now being seen as something positive. The fungus's enzyme cocktail lends itself to numerous genetic modifications, and researchers are looking into which other enzymes can be added to the fungus's gene sequence in order to make it even more efficient at producing bioethanol.

(1) http://www.nature.com/nbt/journal/v26/n5/abs/nbt1403.html
(2) The laboratory has set up a Carbohydrate-Active Enzymes (CAZy) database, http://www.cazy.org, which describes a large number of families of enzymes that create or destroy bonds between sugars.

Julien Guillaume | alfa
Further information:
http://www.nature.com/nbt/journal/v26/n5/abs/nbt1403.html
http://www.cnrs.fr/presse

Further reports about: Biofuels Trichoderma enzyme fungus reesei

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>