Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sulfur in marine archaeological shipwrecks – the “hull story” gives a sour aftertaste

19.05.2008
Advanced chemical analyses reveal that, with the help of smart scavenging bacteria, sulfur and iron compounds accumulated in the timbers of the Swedish warship Vasa during her 333 years on the seabed of the Stockholm harbour.

Contact with oxygen, in conjunction with the high humidity of the museum environment, causes these contaminants to produce sulfuric acid, according to a new doctoral thesis in chemistry from Stockholm University.

The Vasa sank in Stockholm’s harbour on her maiden voyage in 1628 and was salvaged in 1961. The impressively restored ship is, after conservation, on display in the Vasa Museum in Stockholm. At present over 2,000 acidic sulfate salt precipitates have been registered in the timbers of the wreck as a result of the sulfuric acid formation.

In her doctoral thesis from Structural Chemistry at Stockholm University, Yvonne Fors indicates that sulfur contaminants are a common conservation concern for marine archaeological wood. Her thesis presents the background, consequences and some remedies for these processes.

... more about:
»Fors »Iron »Vasa »acid »compounds »sulfuric »thesis

The seawater at the Vasa’s wreck site became heavily polluted over the course of time and bacterial degradation of organic waste from the growing city consumed most of the oxygen in the water. Malodorous hydrogen sulfide was produced by scavenging bacteria, resulting in the accumulation of different sulfur and iron compounds in the wreck’s timbers during 333 years on the seabed.

“In the Vasa high sulfur concentrations are found only in the surface layers of the timbers, while for other shipwrecks such as the Mary Rose in Portsmouth, England, sulfur has penetrated throughout the hull. There are more than two tonnes of sulfur in each of them”, says Yvonne Fors, who has studied how sulfur passes from seawater into the timbers. Advanced x-ray spectroscopic analyses at international research facilities in USA and France were used to map the distribution of the sulfur and iron compounds in the wood cells of the timber. Through contact with oxygen and high humidity conditions sulfur and iron compounds may develop sulfuric acid. Presently, there is approximately two tonnes of sulfuric acid in the Vasa’s wood.

“It is essential to find out as much as possible about how and where the different compounds are bonded in the cell structure of the timber in order to be able to predict their reactivity and the possibility of removing them,” says Yvonne Fors. It appears that the sulfur and iron contaminants can only be partially extracted, without seriously damaging the fragile wood. “It is important to keep a stable climate in the museum to slow down the processes,” says Yvonne Fors. High acidity can have a long-term detrimental effect on the strength of the timber, and this must be limited. Yvonne Fors has carried out some promising initial experiments neutralising the acid in loose pieces from the Vasa by means of ammonia gas. However, any possible side effects on the wood must be carefully evaluated. The discoveries and conclusions in this thesis are an important first step in prolonging the expiration date of this national treasure.

The title of the thesis: Sulfur-Related Conservation Concerns for Marine Archaeological Wood. The Origin, Speciation and Distribution of Accumulated Sulfur with Some Remedies for the Vasa.
The thesis can be downloaded as a PDF file at:
http://www.diva-portal.org/su/theses/abstract.xsql?dbid=7627
The Swedish warship Vasa sank on her maiden voyage in the mouth of the Stockholm harbour on the 10th of August 1628. The Vasa was fitted with what were then the most powerful armaments carried by any ship in northern Europe, and was sent to help the Swedish King Gustav II Adolf in the struggle for control over the Baltics. However, the ship lacked stability and keeled over in a gust and sank to a depth of thirty-two meters after sailing for just over a kilometre. The hull was salvaged in 1961, 333 years later, during a remarkable diving operation, and is now on display in the Vasa Museum in Stockholm.

Maria Erlandsson | alfa
Further information:
http://www.vr.se

Further reports about: Fors Iron Vasa acid compounds sulfuric thesis

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>