Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Team Part of International Effort to Thwart Viruses

15.05.2008
UAB (University of Alabama at Birmingham) scientists were part of an international research team that discovered the unique way certain viruses invade healthy cells, opening the door to new therapies that could block those viruses.

Viruses need a point-of-entry to a cell, typically binding to an antigen on the cell surface as a means of gaining access. The team, reporting in the March issue of the Journal of the American Chemical Society, used a special nuclear magnetic resonance (NMR) technique to precisely identify the point-of-entry on a healthy cell used by rabbit hemorrhagic disease virus (RHDV), a member of the calicivirus family.

The NMR studies definitively identified the main target of the RHDV virus as L-fucose, a sugar found on antigens on the surface of the target cell.

“We now know the chemical signature of the sugar that RHDV zeroes-in on as it invades a cell,” said N. Rama Krishna, Ph.D., professor of biochemistry and molecular genetics and a study co-author. “We can counterattack by designing a drug with the same signature but made even more attractive to the virus, so that the virus binds to the drug instead of binding to the target cell.

... more about:
»Antigen »NMR »RHDV »Target »bind

Krishna says the real significance is that this NMR technique can be used to design anti-viral drugs for similar viruses including other caliciviruses, a family that includes Norwalk and Hepatitis E viruses that cause disease in humans. In fact, an editorial on the study appearing in the April 17th issue of the journal Nature highlighted this work for its impact on the potential development of novel anti-viral drugs.

“This application can be widely used to search for and identify the likely contact points on cell surface antigens that different viruses use as their point-of-entry to the cell,” Krishna said. “By inducing the virus to preferentially bind with a drug that mimics the contact point, we think we can prevent it from infecting a cell.”

Krishna’s laboratory at UAB, one of the most sophisticated in the world in the quantitative use of the special technique called saturation-transfer difference NMR (STD-NMR), collaborated with Thomas Peters and Christoph Rademacher of the University of Luebeck, Monica Palcic of the Carlsberg Laboratory, and Francisco Parra of Instituto Universitario de Biotecnologia de Asturias in identifying the sugar recognized by the RHDV virus.

They placed antigens from the cell bodies in a solution with virus-like particles (VLPs), essentially an inactive virus. The hydrogen signals from the virus were irradiated with radiofrequency pulses. The energy received by the VLPs, called saturation, is passed on to the cell antigens at the binding site. he amount of saturation in those antigens can be measured, thus identifying which particular sugar on the antigens gets “hot”. Those sugars on the antigens, in this case the L-fucose, are the virus target.

“This is a compelling argument for the routine use of the STD-NMR technique in drug design and development in general – it is not limited to anti-virals. Interestingly, the method was originally developed in Germany for screening compound libraries, and is now a popular technique in the pharmaceutical industry for identifying lead compounds” Krishna said

NOTE: The University of Alabama at Birmingham is a separate, independent institution from the University of Alabama, which is located in Tuscaloosa. Please use University of Alabama at Birmingham on first reference and UAB on second reference.

Bob Shepard | newswise
Further information:
http://www.uab.edu

Further reports about: Antigen NMR RHDV Target bind

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: memory-steel - a new material for the strengthening of buildings

A new building material developed at Empa is about to be launched on the market: "memory-steel" can not only be used to reinforce new, but also existing concrete structures. When the material is heated (one-time), prestressing occurs automatically. The Empa spin-off re-fer AG is now presenting the material with shape memory in a series of lectures.

So far, the steel reinforcements in concrete structures are mostly prestressed hydraulically. This re-quires ducts for guiding the tension cables, anchors for...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

 
Latest News

Weighing planets and asteroids

23.10.2018 | Physics and Astronomy

Fiber-based quantum communication - Interference of photons using remote sources

23.10.2018 | Information Technology

'Mushrooms' and 'brushes' help cancer-fighting nanoparticles survive in the body

23.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>