Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Team Part of International Effort to Thwart Viruses

15.05.2008
UAB (University of Alabama at Birmingham) scientists were part of an international research team that discovered the unique way certain viruses invade healthy cells, opening the door to new therapies that could block those viruses.

Viruses need a point-of-entry to a cell, typically binding to an antigen on the cell surface as a means of gaining access. The team, reporting in the March issue of the Journal of the American Chemical Society, used a special nuclear magnetic resonance (NMR) technique to precisely identify the point-of-entry on a healthy cell used by rabbit hemorrhagic disease virus (RHDV), a member of the calicivirus family.

The NMR studies definitively identified the main target of the RHDV virus as L-fucose, a sugar found on antigens on the surface of the target cell.

“We now know the chemical signature of the sugar that RHDV zeroes-in on as it invades a cell,” said N. Rama Krishna, Ph.D., professor of biochemistry and molecular genetics and a study co-author. “We can counterattack by designing a drug with the same signature but made even more attractive to the virus, so that the virus binds to the drug instead of binding to the target cell.

... more about:
»Antigen »NMR »RHDV »Target »bind

Krishna says the real significance is that this NMR technique can be used to design anti-viral drugs for similar viruses including other caliciviruses, a family that includes Norwalk and Hepatitis E viruses that cause disease in humans. In fact, an editorial on the study appearing in the April 17th issue of the journal Nature highlighted this work for its impact on the potential development of novel anti-viral drugs.

“This application can be widely used to search for and identify the likely contact points on cell surface antigens that different viruses use as their point-of-entry to the cell,” Krishna said. “By inducing the virus to preferentially bind with a drug that mimics the contact point, we think we can prevent it from infecting a cell.”

Krishna’s laboratory at UAB, one of the most sophisticated in the world in the quantitative use of the special technique called saturation-transfer difference NMR (STD-NMR), collaborated with Thomas Peters and Christoph Rademacher of the University of Luebeck, Monica Palcic of the Carlsberg Laboratory, and Francisco Parra of Instituto Universitario de Biotecnologia de Asturias in identifying the sugar recognized by the RHDV virus.

They placed antigens from the cell bodies in a solution with virus-like particles (VLPs), essentially an inactive virus. The hydrogen signals from the virus were irradiated with radiofrequency pulses. The energy received by the VLPs, called saturation, is passed on to the cell antigens at the binding site. he amount of saturation in those antigens can be measured, thus identifying which particular sugar on the antigens gets “hot”. Those sugars on the antigens, in this case the L-fucose, are the virus target.

“This is a compelling argument for the routine use of the STD-NMR technique in drug design and development in general – it is not limited to anti-virals. Interestingly, the method was originally developed in Germany for screening compound libraries, and is now a popular technique in the pharmaceutical industry for identifying lead compounds” Krishna said

NOTE: The University of Alabama at Birmingham is a separate, independent institution from the University of Alabama, which is located in Tuscaloosa. Please use University of Alabama at Birmingham on first reference and UAB on second reference.

Bob Shepard | newswise
Further information:
http://www.uab.edu

Further reports about: Antigen NMR RHDV Target bind

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>