Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research shines spotlight on a key player in the dance of chromosomes

14.05.2008
Cell division is essential to life, but the mechanism by which emerging daughter cells organize and divvy up their genetic endowments is little understood.

In a new study, researchers at the University of Illinois and Columbia University report on how a key motor protein orchestrates chromosome movements at a critical stage of cell division.

The study appeared in the Proceedings of the National Academy of Sciences.

Within the complex world of the cell, motor proteins function as a kind of postal service. These proteins carry cargo from one location to another in the cell, a job that requires precision, in both the location and the timing of delivery. They are fueled by a small molecule, adenosine tri-phosphate (ATP).

... more about:
»CENP-E »Chromosome »Division »Key »Selvin »Yardimci »kinesin

Some motor proteins are essential to mitosis – the process by which cell division occurs in higher organisms. During cell division it is important for chromosomes to line up at the middle of the parent cell allowing for their separation between the two daughter cells.

Motor proteins play a key role in the movement of chromosomes to and from the poles of the cell. Should any of these processes lose coordination, it could result in disease or cell death.

How chromosomes move during cell division is a question that is fundamental to biology and is of importance in understanding many diseases. University of Illinois physics professor Paul Selvin and his colleagues focused on a motor protein, centromeric protein E (CENP-E) that is known to be associated with chromosomes.

“The question is whether CENP-E acts like a transporter or like an anchor,” Selvin said.

“A transporter moves things around the cell, whereas an anchor sits someplace in the cell, holds onto something, and causes the thing to be held down,” Selvin said. “It turns out CENP-E is known to be an anchor, but is it also a transporter?”

Earlier studies had established a role for CENP-E in aligning paired chromosomes. This alignment is important for ensuring that one of each pair makes its way into a different daughter cell.

CENP-E is part of a large class of proteins called kinesins. These motor proteins walk across the cell on special tightropes, called microtubules, using ATP as an energy source.

“The motion of ’normal‘ kinesin, kinesin-1, is now well known,” Selvin said. “It turns out it’s like a little person – it walks with its two feet, one in front of the other. I was interested to know whether the normal rules of how kinesin walks apply to these different kinds of kinesins.”

“In vivo studies are hampered by the presence of lots of other proteins, making it hard to study how much a single protein moves, how fast it moves and how much force it produces,” said Hasan Yardimci, a post doctoral researcher in Selvin's lab and lead author on the study.

Instead, Yardimci used a technique that allowed him to look at one molecule at a time.

The most direct way to measure how a protein moves is to watch it in real time. Using special molecular bulbs called quantum dots, which light up the protein, Yardimci was able to watch CENP-E move along its microtubule tightrope. By resolving these motions on the nanometer scale, he was able to make two key observations.

“The protein takes eight nanometer steps in a hand-over-hand fashion,” Yardimci said. The protein moved in a direction consistent with the way chromosomes move within cells, over lengths that are normally observed during cell division.

To test the kind of loads that CENP-E could withstand, Yardimci set up a tug of war between a micron-sized bead and the protein. As the protein moved, it pulled on the bead.

By measuring the force on the bead, the researchers were able to calculate how much force CENP-E could exert.

The observation that CENP-E shares several common features with kinesin-1 provides insights into its molecular workings.

“We showed that it is likely that CENP-E moves chromosomes around,” Selvin said. “That is, we showed that it is a transporter in vitro, hauling around a little bead. Now we need to do it in vivo, on chromosomes.”

The research team included Steven Rosenfeld at Columbia University.

Kaushik Ragunathan | University of Illinois
Further information:
http://www.news.uiuc.edu/news/08/0513proteins.html

Further reports about: CENP-E Chromosome Division Key Selvin Yardimci kinesin

More articles from Life Sciences:

nachricht Predicting a protein's behavior from its appearance
10.12.2019 | Ecole Polytechnique Fédérale de Lausanne

nachricht Could dark carbon be hiding the true scale of ocean 'dead zones'?
10.12.2019 | University of Plymouth

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

City research draws on Formula 1 technology for the construction of skyscrapers

10.12.2019 | Architecture and Construction

Reorganizing a computer chip: Transistors can now both process and store information

10.12.2019 | Information Technology

Could dark carbon be hiding the true scale of ocean 'dead zones'?

10.12.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>