Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What’s the difference between a human and a fruit fly?

13.05.2008
Fruit flies are dramatically different from humans not in their number of genes, but in the number of protein interactions in their bodies, according to scientists who have developed a new way of estimating the total number of interactions between proteins in any organism.

The new research, published today (13 May 2008) in the Proceedings of the National Academy of Sciences journal, shows that humans have approximately 10 times more protein interactions than the simple fruit fly, and 20 times as many as simple, single-cell yeast organisms.

This contradicts comparisons between the numbers of genes in different organisms, which yield surprising results: humans have approximately 24,000 genes, but fruit flies are not far behind, with approximately 14,000 genes.

The interaction between different proteins is behind all physiological systems in the human body. When the body digests food, responds to a change in temperature, or fights off an infection, numerous combinations of protein interactions are involved. However, until now it has been impossible to calculate the numbers of interactions that take place within different organisms.

... more about:
»Human »Interaction »Protein »genes »organism

Professor Michael Stumpf from Imperial College London’s Department of Life Sciences, one of the paper’s authors, explains the significance of the new study, saying:

“Scientists have believed for some time that the complexity of an organism’s protein interactions determine its biological complexity, but until now it’s been impossible to put a number on the size of one organism’s interaction network compared to another, as relatively little work has been done to identify and map these interactions.”

Scientists refer to the total number of protein interactions in the body as the “human interactome”, likening it to the human genome, which is most commonly associated with giving us our human traits.

Professor Stumpf adds: “Understanding the human genome definitely does not go far enough to explain what makes us different from more simple creatures. Our study indicates that protein interactions could hold one of the keys to unraveling how one organism is differentiated from another.”

The researchers devised a mathematical tool which allows them to predict the total size of an organism’s protein interaction network based on currently available, incomplete data.

The researchers’ next steps will be to make much more detailed predictions based on careful comparisons between species. This will be crucial in order to understand, for example, why some fungal species, such as baker’s yeast are important in the production of bread and beer, while other closely related species cause fungal infections with high mortality rates.

The study was carried out by scientists at Imperial College London, the Max-Planck-Institute for Molecular Biology in Germany and the University of Arhus in Denmark.

Danielle Reeves | alfa
Further information:
http://www.imperial.ac.uk

Further reports about: Human Interaction Protein genes organism

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>