Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How embryonic stem cells develop into tissue-specific cells

13.05.2008
While it has long been known that embryonic stem cells have the ability to develop into any kind of tissue-specific cells, the exact mechanism as to how this occurs has heretofore not been demonstrated.

Now, researchers at the Hebrew University of Jerusalem and elsewhere have succeeded in graphically revealing this process, resolving a long-standing question as to whether the stem cells achieve their development through selective activation or selective repression of genes.

The collaborative research group, which included Dr. Eran Meshorer of the Department of Genetics at the Silberman Institute of Life Sciences at the Hebrew University of Jerusalem, has revealed that the embryonic stem (ES) cells express large proportions of their genome “promiscuously.” This permissive expression includes lineage-specific and tissue-specific genes, non-coding regions of the genome that are normally “silent,” and repetitive sequences in the genome, which comprise the majority of the mammalian genome but are also normally not expressed.

When ES cells differentiate into specific cell tissue-types, they undergo global genetic silencing. But until this occurs, the ES cells maintain an open and active genome. This might very well be the secret of their success, since by maintaining this flexibility they maintain their capacity to become any cell type. Once silencing, or genetic repression, occurs, this ability is gone.

... more about:
»Embryonic »Stem »develop »tissue-specific

Thus, one can say that the ES cells stand at the ready until the “last minute” -- prepared to engage in selective activation into specific cells -- holding “in abeyance” their ability to become any kind of cells at the point and time required.

To reveal the process as to how this occurs, the researchers created the first full-mouse genomic platform of DNA microarrays. Microarrays are glass-based chips that allow simultaneous detection of thousands of genes. The microarrays used in the study were not confined to specific genes only but spanned the entire genome.

Hundreds of such microarrays were required in the study to cover the entire genome in different time points during stem cell differentiation. It was by observation of these sequences that the researchers were able to establish exactly how and at what point the stem cells developed into specific tissue cells and when the silencing occurs.

The project carried out by the researchers appears in the latest issue of the journal Cell Stem Cell. The collaborators in addition to Dr. Meshorer who participated in the project include Tom Misteli, Ron McKay, Stuart Le Grice, Sol Efroni and Kenneth Buetow of the US National Institutes of Health, Thomas Gingeras of Affymetrix Inc. of Santa Clara, Calif., and David Bazett-Jones of The Hospital for Sick Children, Toronto.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

Further reports about: Embryonic Stem develop tissue-specific

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>