Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How embryonic stem cells develop into tissue-specific cells

13.05.2008
While it has long been known that embryonic stem cells have the ability to develop into any kind of tissue-specific cells, the exact mechanism as to how this occurs has heretofore not been demonstrated.

Now, researchers at the Hebrew University of Jerusalem and elsewhere have succeeded in graphically revealing this process, resolving a long-standing question as to whether the stem cells achieve their development through selective activation or selective repression of genes.

The collaborative research group, which included Dr. Eran Meshorer of the Department of Genetics at the Silberman Institute of Life Sciences at the Hebrew University of Jerusalem, has revealed that the embryonic stem (ES) cells express large proportions of their genome “promiscuously.” This permissive expression includes lineage-specific and tissue-specific genes, non-coding regions of the genome that are normally “silent,” and repetitive sequences in the genome, which comprise the majority of the mammalian genome but are also normally not expressed.

When ES cells differentiate into specific cell tissue-types, they undergo global genetic silencing. But until this occurs, the ES cells maintain an open and active genome. This might very well be the secret of their success, since by maintaining this flexibility they maintain their capacity to become any cell type. Once silencing, or genetic repression, occurs, this ability is gone.

... more about:
»Embryonic »Stem »develop »tissue-specific

Thus, one can say that the ES cells stand at the ready until the “last minute” -- prepared to engage in selective activation into specific cells -- holding “in abeyance” their ability to become any kind of cells at the point and time required.

To reveal the process as to how this occurs, the researchers created the first full-mouse genomic platform of DNA microarrays. Microarrays are glass-based chips that allow simultaneous detection of thousands of genes. The microarrays used in the study were not confined to specific genes only but spanned the entire genome.

Hundreds of such microarrays were required in the study to cover the entire genome in different time points during stem cell differentiation. It was by observation of these sequences that the researchers were able to establish exactly how and at what point the stem cells developed into specific tissue cells and when the silencing occurs.

The project carried out by the researchers appears in the latest issue of the journal Cell Stem Cell. The collaborators in addition to Dr. Meshorer who participated in the project include Tom Misteli, Ron McKay, Stuart Le Grice, Sol Efroni and Kenneth Buetow of the US National Institutes of Health, Thomas Gingeras of Affymetrix Inc. of Santa Clara, Calif., and David Bazett-Jones of The Hospital for Sick Children, Toronto.

Jerry Barach | Hebrew University of Jerusalem
Further information:
http://www.huji.ac.il

Further reports about: Embryonic Stem develop tissue-specific

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>