Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surprising discovery: Multicellular response is 'all for one'

09.05.2008
Real or perceived threats can trigger the well-known “fight or flight response” in humans and other animals. Adrenaline flows, and the stressed individual’s heart pumps faster, the muscles work harder, the brain sharpens and non-essential systems shut down. The whole organism responds in concert in order to survive.

At the molecular level, it has been widely assumed that, in single-celled organisms, each cell perceives its environment -- and responds to stress conditions -- individually, each on its own to protect itself. Likewise, it had been thought that cells in multicellular organisms respond the same way, but a new study by scientists at Northwestern University reports otherwise.

The Northwestern researchers demonstrated something very unexpected in their studies of the worm C. elegans: Authority is taken away from individual cells and given to two specialized neurons to sense temperature stress and organize an integrated molecular response for the entire organism.

The study, with results that show a possible parallel with the orchestrated “fight or flight response,” will be published in the May 9 issue of the journal Science.

... more about:
»Molecular »neurons »organism »temperature

“This was surprising -- that two neurons control the response of the 957 other cells in C. elegans,” said Richard I. Morimoto, Bill and Gayle Cook Professor of Biochemistry, Molecular Biology and Cell Biology in Northwestern’s Weinberg College of Arts and Sciences. He led the research team.

“It is well established that single cells respond to physiological stress on their own, cell by cell. Now we’ve shown this is not the case when individual cells become organized to form a multicellular organism. Now it is all for one -- an integrated system where the cells and tissues only respond to stress when the neuronal signal says to respond as an organism.”

The findings have implications for new ways of thinking about diseases that affect the stress pathways, says Morimoto. Neurons that sense the environment govern such important pathways as stress response and molecular chaperones, which play a significant role in aging and neurodegenerative diseases.

In their experiments, the researchers genetically blocked the two thermosensory neurons (known as AFDs) and their ability to sense temperature and discovered there was no response to stress in any cell in the organism without them. (C. elegans is a transparent roundworm whose genome, or complete genetic sequence, is known and is a favorite organism of biologists.)

“This shows, for the first time, that the molecular response to physiological stress is organized by specific neurons and suggests similarities to the neurohormonal response to stress,” said Morimoto, who was the first to clone a human heat shock gene in 1985. “The two neurons control how all the other cells in the animal sense and respond to physiological stress.”

The team also checked the “machinery” of the 957 other cells (those that are not thermosensory neurons) in the mutant animals and determined that the individual cells could sense an increase in temperature. But, because the thermosensory neurons were not working properly and sending signals, the cells did not initiate a heat shock response. No signal, no response.

The researchers proposed a model whereby this loss of cell autonomy serves to integrate behavioral, metabolic and stress-related responses to establish an organismal response to environmental change.

The researchers would predict, considering the study’s results, that other organisms including humans might have similar classes of neurons that organize and orchestrate a response to stress -- a central neuronal control switch for regulating temperature and the expression of genes that protect the health of proteins.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

Further reports about: Molecular neurons organism temperature

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>