Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify interacting proteins key to melanoma development, treatment

08.05.2008
Researchers have discovered how a mole develops into melanoma by showing the interaction of two key proteins involved in 60-70 percent of tumors. The Penn State scientists also demonstrate that therapeutic targeting of these proteins is necessary for drugs to effectively treat this deadly form of cancer.

"We have shown that when two proteins – (V600E)B-Raf and Akt3 – communicate with one another in a mole, they cooperate leading to the development of melanoma," said Gavin Robertson, lead author and associate professor of pharmacology, pathology and dermatology, and director of the Foreman Foundation Melanoma Therapeutics Program at the Penn State College of Medicine Cancer Institute. "We have also shown that effective therapies for melanoma need to target both these proteins, which essentially eliminates the tumors.”

Melanoma is the most deadly form of skin cancer because it metastasizes or moves around the body so quickly. In general, people with advanced-stage disease only have months to live. Currently, melanoma kills one person every hour in the U.S., and is predicted to affect one in 50 people by 2010. In recent years, researchers have zeroed in on two key genes – B-Raf and Akt3 – that cause this deadly cancer, and which could be important targets in the treatment of melanoma.

B-Raf is the most mutated gene in melanoma. The mutant protein, (V600E)B-Raf, produced by this gene is important in helping mole cells survive and grow but it is unable to form melanomas on its own. Nearly 90 percent of all moles have the mutant protein but it is not fully clear why only some of them turn into melanomas.

... more about:
»Akt3 »B-Raf »Key »Mutant »Protein »Robertson »Treatment »melanoma »mole

Robertson and his colleagues have found that a second protein – produced by Akt3 – regulates the activity of the mutated B-Raf, which aids the development of melanoma.

"What we have found is a second event that is necessary for melanomas to develop," added Robertson, whose findings are reported in the May 1 issue of the journal Cancer Research.

While comparing proteins within normal moles and human melanoma cells, the Penn State researchers noticed that the two proteins were communicating with one another only among melanoma cells but not among normal cells.

When the Akt3 protein was put into cells in conjunction with the mutant B-Raf gene, they were better able to form melanomas compared to cells just containing the mutant B-Raf gene.

"This tells us that you can have a mole but it cannot turn into melanoma without the presence of the Akt3 protein," explained Robertson.

While it is still unclear what brings the B-Raf and Akt3 proteins together, the Penn State researchers say they now have a better understanding of how these two proteins interact to cause melanoma.

The initial mutation of the B-Raf gene helps to create moles, but high levels of B-Raf activity due to the mutation prevents the cells from becoming a melanoma. It is only when the Akt3 protein is present in those cells and communicates with B-Raf that it lower its activity, thereby creating favorable conditions within the mole for cells to multiply, and allow them to turn into a melanoma.

Robertson said the discovery could pave the way for newer and more effective treatments for melanoma.

"We have shown that if we target the two proteins separately, it somewhat inhibits the development of tumors but if we target them together, the development of tumors gets inhibited significantly," he added. "It validates these proteins as key targets for effective melanoma therapy."

Robertson envisions that future physicians could look at blood samples from melanoma patients containing melanoma cells and determine whether the two proteins are in their cells. The patients could then receive drugs that target these proteins to more effectively treat their disease. It would be personalized cancer treatment that would be more effective and less toxic with fewer side effects, the Penn State researcher explained.

"In the search for a cure for melanoma, we are now closer because we know that we need to target these two proteins in order to have a dramatic impact on the development of melanoma," Robertson added.

For patients, this means that in the future, some new drug could target these proteins to treat advanced disease or be added to sunscreen lotion, for instance, that would prevent Akt3 functioning in the cell. It would not only help control a tumor, but also prevent one as well.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: Akt3 B-Raf Key Mutant Protein Robertson Treatment melanoma mole

More articles from Life Sciences:

nachricht Hopkins researchers ID neurotransmitter that helps cancers progress
25.04.2019 | Johns Hopkins Medicine

nachricht Trigger region found for absence epileptic seizures
25.04.2019 | RIKEN

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>