Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Wnt Signaling Pathway - A Retrospective Look at 25 Years of Research

07.05.2008
Over the past years, biologists have gained ever deeper insights into the biochemical and molecular networks regulating the development of living beings, from the fertilized egg to complete organisms containing billions of cells and different organs.

Interestingly, only a handful of signaling pathways control this complex development. These pathways act in synergy with each other to prevent maldevelopment or tumor formation.

One of the most thoroughly researched signaling pathways is the Wnt signaling pathway, which was first characterized 25 years ago. Walter Birchmeier, a cell biologist of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch who has done important research in this field, and Alexandra Klaus, a PhD student from his research group, have written an article describing the major milestones that have substantially contributed to scientists' understanding of the Wnt signaling system. Their review has now been published in the current issue of Nature Reviews Cancer (Vol. 8, Nr. 5, pp. 387 - 398)*.

In 1982, Roel Nusse (now at Stanford University, CA, USA) and Harold Varmus (now at Memorial Sloan-Kettering Cancer Center, New York City, NY, USA) discovered Int1, the first gene of the Wnt signaling pathway. They found that this gene, when artificially activated in the mouse model, induces mammary gland tumors. At about the same time, Christiane Nüsslein-Volhard, who was later awarded the Nobel Prize and is now working at the Max Planck Institute for Developmental Biology in Tübingen, discovered that the fruit fly Drosophila melanogaster did not develop wings when the gene Wingless (Wg) was lacking. As it turned out, Int1, the mouse mammary oncogene that Nusse had discovered, was found to be identical to Wingless in Drosophila. Nusse then suggested a new nomenclature, combining Wingless (Wg) and Int1 to form the name Wnt. Since then, researchers have discovered more than 100 additional genes that play a role in the Wnt signaling pathway.

... more about:
»APC »Development »Stem »Wnt »activate »pathway »prevent

Wnt signals conserve stem cell reservoir

In the healthy cell, the Wnt signal activates a complicated signal cascade, the mechanisms of which are still not completely understood. Researchers know that the signal penetrates into the cell nucleus, the control center of the cell, and activates gene expression there. However, the Wnt signaling pathway is not only active during development from the embryo to the mature organism, but also in stem cells. Stem cells form the reservoir for replenishing those cells that are continuously turned over in the body, for example blood and skin cells. Wnt signals keep these cells from prematurely specializing into specific cells. Thus, a functioning Wnt signaling prevents the stem cell reservoir from "drying up".

Cancer due to misregulation of signaling pathways

In 1993, different researchers, including Bert Vogelstein and Kenneth Kinzler (both now at Johns Hopkins University in Baltimore, USA), discovered a link between the Wnt signaling pathway and the development of cancer. At that time, it was known that a mutation of the APC gene induces colon cancer. The new discovery, however, was that APC influences one of the key role players (ß-catenin) of the Wnt signaling pathway. Normally, the APC gene is active, ß-catenin is degraded and the Wnt signaling pathway is inhibited. However, a mutation of the APC gene prevents ß-catenin degradation. As a result, ß-catenin is able to penetrate the cell nucleus and activate certain ß-catenin genes which should be turned off in adult cells and, hence, tumors form. This process is considered to be the initial step in colon carcinogenesis.

The Wnt signaling pathway also plays a role in so-called cancer stem cells (CSCs). Many scientists suspect that tumorigenesis is associated with these cells. Cancer stem cells assume many of the characteristics of stem cells by activating programs the body used during embryonic development - for example, the Wnt signaling pathway. Jörg Hülsken, who now works at the Swiss Cancer Research Institute in Lausanne and was a former colleague of Walter Birchmeier, recently demonstrated that ß-catenin maintains the stem cell characteristics of skin cancer cells. "Since the Wnt signaling pathway does not play an important role in healthy skin cells," Walter Birchmeier said, "it might provide a possible drug target for fighting cancer stem cells."

In addition to cancer, other diseases can also develop due to a misactivation of the Wnt signaling pathway. For example, individual components of the signaling pathway can contribute to the development of heart and eye diseases, Alzheimer's disease, or schizophrenia.

"In the next 25 years, we want to identify further components of the Wnt signaling pathway and gain better insight into how these interact with each other," Alexandra Klaus explained. In the future, this research could lead to new drugs which block the Wnt signaling pathway. "However, since stem cells need this pathway, too," she pointed out, "this is not as easy as one might expect."

*Wnt signalling and its impact on development and cancer

Alexandra Klaus1 and Walter Birchmeier1

1Max Delbrück Centre for Molecular Medicine, Robert-Roessle-Strasse 10, 13,125 Berlin, Germany.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Str. 10¸13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96; Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/de/news
http://www.nature.com/nrc/index.html
http://www.nature.com/nature/journal/v452/n7187/abs/nature06835.html

Further reports about: APC Development Stem Wnt activate pathway prevent

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

In the ocean's twilight zone, tiny organisms may have giant effect on Earth's carbon cycle

19.07.2018 | Earth Sciences

Lying in a foreign language is easier

19.07.2018 | Social Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>