Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Wnt Signaling Pathway - A Retrospective Look at 25 Years of Research

07.05.2008
Over the past years, biologists have gained ever deeper insights into the biochemical and molecular networks regulating the development of living beings, from the fertilized egg to complete organisms containing billions of cells and different organs.

Interestingly, only a handful of signaling pathways control this complex development. These pathways act in synergy with each other to prevent maldevelopment or tumor formation.

One of the most thoroughly researched signaling pathways is the Wnt signaling pathway, which was first characterized 25 years ago. Walter Birchmeier, a cell biologist of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch who has done important research in this field, and Alexandra Klaus, a PhD student from his research group, have written an article describing the major milestones that have substantially contributed to scientists' understanding of the Wnt signaling system. Their review has now been published in the current issue of Nature Reviews Cancer (Vol. 8, Nr. 5, pp. 387 - 398)*.

In 1982, Roel Nusse (now at Stanford University, CA, USA) and Harold Varmus (now at Memorial Sloan-Kettering Cancer Center, New York City, NY, USA) discovered Int1, the first gene of the Wnt signaling pathway. They found that this gene, when artificially activated in the mouse model, induces mammary gland tumors. At about the same time, Christiane Nüsslein-Volhard, who was later awarded the Nobel Prize and is now working at the Max Planck Institute for Developmental Biology in Tübingen, discovered that the fruit fly Drosophila melanogaster did not develop wings when the gene Wingless (Wg) was lacking. As it turned out, Int1, the mouse mammary oncogene that Nusse had discovered, was found to be identical to Wingless in Drosophila. Nusse then suggested a new nomenclature, combining Wingless (Wg) and Int1 to form the name Wnt. Since then, researchers have discovered more than 100 additional genes that play a role in the Wnt signaling pathway.

... more about:
»APC »Development »Stem »Wnt »activate »pathway »prevent

Wnt signals conserve stem cell reservoir

In the healthy cell, the Wnt signal activates a complicated signal cascade, the mechanisms of which are still not completely understood. Researchers know that the signal penetrates into the cell nucleus, the control center of the cell, and activates gene expression there. However, the Wnt signaling pathway is not only active during development from the embryo to the mature organism, but also in stem cells. Stem cells form the reservoir for replenishing those cells that are continuously turned over in the body, for example blood and skin cells. Wnt signals keep these cells from prematurely specializing into specific cells. Thus, a functioning Wnt signaling prevents the stem cell reservoir from "drying up".

Cancer due to misregulation of signaling pathways

In 1993, different researchers, including Bert Vogelstein and Kenneth Kinzler (both now at Johns Hopkins University in Baltimore, USA), discovered a link between the Wnt signaling pathway and the development of cancer. At that time, it was known that a mutation of the APC gene induces colon cancer. The new discovery, however, was that APC influences one of the key role players (ß-catenin) of the Wnt signaling pathway. Normally, the APC gene is active, ß-catenin is degraded and the Wnt signaling pathway is inhibited. However, a mutation of the APC gene prevents ß-catenin degradation. As a result, ß-catenin is able to penetrate the cell nucleus and activate certain ß-catenin genes which should be turned off in adult cells and, hence, tumors form. This process is considered to be the initial step in colon carcinogenesis.

The Wnt signaling pathway also plays a role in so-called cancer stem cells (CSCs). Many scientists suspect that tumorigenesis is associated with these cells. Cancer stem cells assume many of the characteristics of stem cells by activating programs the body used during embryonic development - for example, the Wnt signaling pathway. Jörg Hülsken, who now works at the Swiss Cancer Research Institute in Lausanne and was a former colleague of Walter Birchmeier, recently demonstrated that ß-catenin maintains the stem cell characteristics of skin cancer cells. "Since the Wnt signaling pathway does not play an important role in healthy skin cells," Walter Birchmeier said, "it might provide a possible drug target for fighting cancer stem cells."

In addition to cancer, other diseases can also develop due to a misactivation of the Wnt signaling pathway. For example, individual components of the signaling pathway can contribute to the development of heart and eye diseases, Alzheimer's disease, or schizophrenia.

"In the next 25 years, we want to identify further components of the Wnt signaling pathway and gain better insight into how these interact with each other," Alexandra Klaus explained. In the future, this research could lead to new drugs which block the Wnt signaling pathway. "However, since stem cells need this pathway, too," she pointed out, "this is not as easy as one might expect."

*Wnt signalling and its impact on development and cancer

Alexandra Klaus1 and Walter Birchmeier1

1Max Delbrück Centre for Molecular Medicine, Robert-Roessle-Strasse 10, 13,125 Berlin, Germany.

Barbara Bachtler
Press and Public Affairs
Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Str. 10¸13125 Berlin, Germany
Phone: +49 (0) 30 94 06 - 38 96; Fax: +49 (0) 30 94 06 - 38 33
e-mail: presse@mdc-berlin.de

Barbara Bachtler | idw
Further information:
http://www.mdc-berlin.de/de/news
http://www.nature.com/nrc/index.html
http://www.nature.com/nature/journal/v452/n7187/abs/nature06835.html

Further reports about: APC Development Stem Wnt activate pathway prevent

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>