Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Common herbicide disrupts human hormone activity in cell studies

07.05.2008
A common weedkiller in the U.S., already suspected of causing sexual abnormalities in frogs and fish, has now been found to alter hormonal signaling in human cells, scientists from the University of California San Francisco (UCSF) report.

The herbicide atrazine is the second most widely used weedkiller in the U.S., applied to corn and sorghum fields throughout the Midwest and also spread on suburban lawns and gardens. It was banned in Europe after studies linked the chemical to endocrine disruptions in fish and amphibians.

The UCSF study is the first to identify its full effect on human cells. It is being reported in the May 7 issue of the journal “PLoS ONE.”

In studies with human placental cells in culture, the UCSF scientists found that atrazine increased the activity of a gene associated with abnormal human birth weight when over-expressed in the placenta. Atrazine also targeted a second gene that has been found to be amplified in the uterus of women with unexplained infertility.

... more about:
»Endocrine »Human »Steroid »UCSF »atrazine »enzyme »hormone »sensitive

In parallel studies of zebrafish, a widely used animal in development studies, the research team showed that atrazine “feminized” the fish population – increasing the proportion of fish that developed into females. In water with atrazine concentrations comparable to those found in runoff from agricultural fields, the proportion of female fish increased two-fold. Environmental factors are known to influence the sex of zebrafish and many other fish and amphibians as they develop.

“These fish are very sensitive to endocrine disrupting chemicals, so one might think of them as ‘sentinels’ to potential developmental dangers in humans,” said Holly Ingraham, PhD, senior author on the study and a UCSF Professor of Cellular and Molecular Pharmacology. “These atrazine- sensitive genes are central to normal reproduction and are found in steroid producing tissues. You have to wonder about the long-term effects of exposing the rapidly developing fetus to atrazine or other endocrine disruptors.”

Ingraham intends to determine precisely how atrazine affects human and other mammalian endocrine cells and why these cells are particularly sensitive to it. She notes that bisphenol A, a compound in many hard plastic consumer products, is also an endocrine disrupter and is now under increased study for its safety. In April, Canada announced a decision to ban sale of consumer products with bisphenol A.

The lead author of the study is Miyuki Suzawa, a postdoctoral fellow in Ingraham’s lab.

UCSF researchers exposed sexually immature zebrafish to atrazine and other chemicals for different periods of time. They found that exposure to atrazine for 48 hours at concentrations that might be found in water containing agricultural runoff, produced twice as many female fish.

Through genetic analysis, they found that atrazine preferentially activates a class of receptors in the cell nucleus, including two known as SF-1 and LRH-1. SF-1 regulates production of enzymes involved in the synthesis of steroids in the body and development of many endocrine tissues. One of these enzymes, known as Aromatase, plays a role in determining whether lower vertebrates, such as fish will become male or female. Aromatase is known as a feminizing enzyme.

In the human placental cell culture studies, the scientists found that a 24-hour exposure to atrazine activates a cluster of genes involved in hormone signaling and steroid synthesis.

They report, “Endocrine-related cell types with a capacity for steroid generation appear to be especially sensitive (to Atrazine), as demonstrated by the “exquisite” cellular specificity of the atrazine response.”

The finding that a pervasive and persistent environmental chemical appears to significantly change hormone networks means that scientists must take a broader look at this herbicide’s potential effect on human health, Ingraham said. Up to now, much of the focus has been on breast cancer, but since proper development of the endocrine system is important for normal reproduction, stress responses and metabolism, early exposure to this chemical in a fetus or infant might alter normal physiology later in life, she said.

Wallace Ravven | EurekAlert!
Further information:
http://www.ucsf.edu

Further reports about: Endocrine Human Steroid UCSF atrazine enzyme hormone sensitive

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>