Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The world`s most stable genome has been identified in aphid endosymbionts

01.07.2002


Bacteria that reproduce inside aphids have not changed their genetic make-up for the last 50-70 million years. This makes the genomes of these bacteria the most stable of all organisms yet studied. This finding is presented by a team of scientists at Uppsala University, Sweden, in the latest issue of the scientific journal Science.



Under the leadership of Professor Siv Andersson, researchers Ivica Tama, Lisa Klasson, Björn Canbäck, Kristina Näslund, Ann-Sofie Eriksson, and Johan Sandström at the Department of Molecular Evolution, Center for Evolutionary Biology, in collaboration with Professor Nancy Moran in Tucson, Arizona, have described the entire genetic make-up of a bacterium that reproduces inside aphids, Buchnera (Sg) and compared it to that of a close relative, Buchnera (Ap).

These aphid endosymbionts, so called because they live in symbiosis with aphids, are closely related to common bacteria like Salmonella, but the adaptation to the aphids have entailed a drastic reduction in the size of the genome, which now consists of only 640,000 bases, about 14% of the genome of Salmonella species.


Aphid endosymbionts produce important amino acids that are not present in the plant sap that the aphids drink. The bacteria live in a special type of cell in the body of the aphids and are transmitted from one generation to the next by being packed into the eggs of the aphides. These bacteria are believed to have lived in symbiosis with aphids for at least 150 million years. They have now become so important that aphides can no longer live without their bacteria. If aphids treated with antibiotics, they becomes sterile -- or die.

With the aid of available fossil data from aphids, it has been estimated that the aphids that harbor these two bacteria diverged from each other roughly 50-70 million years ago. Since these aphis symbionts have lived enclosed in the bodies of the aphids, this dating can also be used to determine when the bacterial endosymbionts diverged from each other. By measuring differences in the two genomes, the Uppsala scientists have been able to calculate for the first time exactly how many mutations have taken place in the genome of a bacterium in nature over a period spanning 50-70 million years. Surprisingly, it has now been shown that these tiny, isolated aphis bacteria have largely escaped the ravages of time. The biggest surprise is that the order of the genes has not changed over the past 50 million years.

This stability is in stark contrast to the genomes of Salmonella species, which change very rapidly in structure. It has been calculated that the genomic structure of Salmonella has been altered at a rate more than 2,000 times that of the aphid endosymbionts. The secret behind the extreme stability of the aphid endosymbionts probably lies in the fact that during the early process of degradation they eliminated the genes that are needed for cutting and pasting genetic material.

However, it is extremely unlikely that the aphids` stable minibacteria will ever return to a normal life outside the aphids. They are now completely controlled by the aphids, so much so that the question can be raised whether they should be seen as bacteria or rather as organs of aphides. But if that is the case, then this is the first organ that has its own genetic code!

Jon Hogdal | alfa
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht How molecules teeter in a laser field
18.01.2019 | Forschungsverbund Berlin

nachricht Discovery of enhanced bone growth could lead to new treatments for osteoporosis
18.01.2019 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>