Scientists discover why plague is so lethal

“The plague bacterium Yersinia pestis needs calcium in order to grow at body temperature. When there is no calcium available, it produces a large amount of an amino acid called aspartic acid,” said Professor Brubaker from the University of Chicago, USA. “We found that this is because Y. pestis is missing an important enzyme.”

Bubonic plague has killed over 200 million people during the course of history and is thus the most devastating acute infectious disease known to man. Despite this, we are still uncertain about the molecular basis of its extraordinary virulence.

“Y. pestis evolved from its ancestor Y. pseudotuberculosis within the last 20,000 years, suggesting its high lethality reflects only a few genetic changes. We discovered that a single mutation in the genome of Y. pestis means the enzyme aspartase is not produced,” said Professor Brubaker.

Aspartase is present in almost all bacteria but it is curiously absent in many pathogenic types. These include mycobacteria that are pathogenic to man, Francisella tularensis and rickettsiae (both of which cause diseases transmitted to humans via insects). “This suggests that the absence of aspartase may contribute to serious disease,” said Professor Brubaker.

Aspartase digests aspartic acid. Because Y. pestis doesn’t have the enzyme, it produces much more aspartic acid than is required by the person infected. This may cause an imbalance to the host amino acid pools. “If this is the case then we might be able to reduce the death rates of these diseases by developing a treatment that removes some of the extra aspartic acid,” said Professor Brubaker.

Media Contact

Lucy Goodchild EurekAlert!

More Information:

http://www.sgm.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors