Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lab in a Drop

06.05.2008
Lab-on-a-chip to the extreme: pocket-sized PCR rapid test including sample preparation

Analysis and diagnosis in a chip format are coming of age, but their practical application has been limited because until now, the sample usually had to be prepared separately and on a nonminiaturized scale.

Jürgen Pipper and his team at the Institute of Bioengineering and Nanotechnology in Singapore want to change this. They have now developed a rapid test for genetic diagnosis that combines the preparation of biological samples with a polymerase chain reaction (PCR) on one chip.

As they report in the journal Angewandte Chemie, the “laboratory device” for all steps in this system is a single drop containing magnetic nanoparticles, which is moved across the chip by a magnetic field.

... more about:
»Magnetic »PCR »blood »droplet »sample

PCR allows gene sequences to be duplicated and identified—to identify a disease trigger, for example. In this process, the sample must cycle through a specific sequence of temperatures. Because of the slow heating and cooling processes, laboratory PCR usually takes several hours. The new chip PCR requires only minutes, including for the sample preparation.

In contrast to other chip-based methods, the actual sample, such as a drop of blood, can be placed directly on the PCR chip, where it is mixed with a drop that contains magnetic particles. These particles are equipped with antibodies on their surface, antibodies that bind specifically to the interesting cells in the blood. By moving a magnet underneath the chip, a droplet containing the bound magnetic particles is physically pulled out of the blood droplet and moved on to the next station—a droplet of washing liquid. The magnetic droplet is combined with the washing droplet and then pulled out again through movement of the magnet. Another droplet then delivers the enzymes and reagents necessary for cell disruption.

The last station is the PCR station. After combination with a reagent droplet, the magnetic droplet is moved around like a clockwork, passing again and again through four different zones set to the temperatures necessary for PCR. Each cycle lasts 8 seconds. A fluorescence detector over one of the zones monitors the progress of the PCR (real-time PCR) and indicates whether the desired gene sequence is present and in what amount.

With their new PCR chip, the researchers were able to isolate 30 cells implanted with the genetic information for a green-fluorescing protein from 25 µL of blood, concentrate them 100-fold, wash them, rupture them, and detect the gene for the green protein by real-time PCR—all within just 17 minutes!

Author: Jürgen Pipper, Institute of Bioengineering and Nanotechnology (Singapore), http://www.ibn.a-star.edu.sg/research_areas_04_details.php?id=103

Title: Clockwork PCR Including Sample Preparation

Angewandte Chemie International Edition 2008, 47, No. 21, 3900–3904, doi: 10.1002/anie.200705016

Jürgen Pipper | Angewandte Chemie
Further information:
http://pressroom.angewandte.org.
http://www.ibn.a-star.edu.sg/research_areas_04_details.php?id=103

Further reports about: Magnetic PCR blood droplet sample

More articles from Life Sciences:

nachricht The Secret of the Rock Drawings
24.05.2019 | Max-Planck-Institut für Chemie

nachricht Chemical juggling with three particles
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

New system by TU Graz automatically recognises pedestrians’ intent to cross the road

27.05.2019 | Information Technology

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>