Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Male seahorses are nature's Mr. Mom

05.05.2008
Male seahorses are nature’s real-life Mr. Moms – they take fathering to a whole new level: Pregnancy.

Although it is common for male fish to play the dominant parenting role, male pregnancy is a complex process unique to the fish family Syngnathidae, which includes pipefish, seahorses and sea dragons. Texas A&M University evolutionary biology researcher Adam Jones and colleagues in his lab are studying the effects of male pregnancy on sex roles and sexual selection of mates and are trying to understand how the novel body structures necessary for male pregnancy evolved. By doing this, the researchers hope to gain a better understanding of the evolutionary mechanisms responsible for changes in the structure of organisms over time.

“We are using seahorses and their relatives to address one of the most exciting areas of research in modern evolutionary biology: the origin of complex traits,” Jones said. “The brood pouch on male seahorses and pipefish where females deposit eggs during mating is a novel trait that has had a huge impact on the biology of the species because the ability for males to become pregnant has completely changed the mating dynamics.”

When seahorses mate, the female inserts her ovipositor into the male’s brood pouch (an external structure that grows on the body of the male) and deposits her unfertilized eggs into the pouch. The male then releases sperm into the pouch to fertilize the eggs. “It wouldn’t be that interesting if the brood pouch were just a flap of skin where the females put regular fish eggs and they developed in the bag instead of on the sea floor,” Jones said. “But the male pregnancy in some species of seahorses and pipefish is physiologically much more complex than that.”

... more about:
»Evolutionary »Jones »Sex »Trait »brood »deposit »mate »mating »pipefish »pouch »pregnancy »species »steps

After the female deposits her unfertilized eggs into the male, the outer shell of the eggs breaks down, and tissue from the male grows up around the eggs in the pouch. After fertilizing the eggs, the male closely controls the prenatal environment of the embryos in his pouch. The male keeps blood flowing around the embryos, controls the salt concentrations in the pouch, and provides oxygen and nutrition to the developing offspring through a placenta-like structure until he gives birth.

Male pregnancy has interesting implications for sex roles in mating, Jones explained, because in most species, males compete for access to females, so you usually see the evolution of secondary sex traits in males (for example, a peacock’s tail or antlers in deer). But in some species of pipefish, the sex roles are reversed because males become pregnant and there is limited brood pouch space. So females compete for access to available males, and thus secondary sex traits (such as brightly colored ornamentation) evolve in female pipefish instead of males.

“From a research standpoint, it’s interesting because there aren’t very many species in which there is a sex role reversal,” Jones said. “It provides a unique opportunity to study sexual selection in this reversed context.”

To study the mating behavior of seahorses and pipefish, Jones’ lab uses molecular markers for forensic maternity analysis to figure out the mother of a male’s offspring. The lab found that gulf pipefish mate according to the “classic polyandry” system, where each male receives eggs from a single female per pregnancy, but females can mate with multiple males. Because attractive females can mate multiple times, this system results in very strong competition in sexual selection, and female gulf pipefish have evolved strong secondary sexual traits, Jones said.

Seahorses, however, are monogamous within a breeding season, and each seahorse only mates with one other seahorse. In this system, if there are equal sex ratios, there is not as much competition among females because there are enough mates for everyone, Jones explained. So seahorses have not evolved the strong secondary sexual traits that pipefish have.

Male pregnancy also results in a reversal in sex-related behaviors, Jones said. “Females exhibit a competitive behavior that’s normally a male-type attribute, and males end up being choosy, which is normally a more female-type attribute,” he said. His lab studies the evolutionary steps leading to that reversal in behavior and the role that hormones play in the change.

Jones’ lab also studies how the brood pouch first evolved in seahorses and pipefish. “A big question in evolutionary biology is how a novel structure gets all of the necessary genes and parts to function,” Jones said. “So we are trying to understand how the brood pouch and the genes required for male pregnancy arose over evolutionary time.”

One of the interesting things about the brood pouch is that it appears to have evolved independently multiple times. There are two major lineages of seahorses and pipefish – trunk-brooding and tail-brooding – and the brood pouch structure independently evolved in each of these groups, Jones said.

Another area Jones’ lab is researching is the evolutionary steps that led to the unique overall shape of seahorses. “How do you go from just being a regular-old looking fish to being something really unusual like a seahorse?” Jones said. “There are a lot of evolutionary steps involved in that.”

Jones explained that the first step in the evolutionary process was the elongation of the fish’s body, which the lab is currently studying. The next step was the addition of other unique structural features that seahorses possess, such as the bending of the fish into its unique shape. The head of a seahorse is unusual because unlike most fish, a seahorse’s head is at a 90-degree angle to its body, Jones explained. Seahorses also have a prehensile tail, meaning that, unlike most fish, they can use their tail to grasp onto things.

“These are all interesting changes, and we’re interested in studying how these novel traits arose and the evolutionary steps that led to them,” Jones said. “Ultimately, we hope to gain deeper insights into some of the evolutionary mechanisms responsible for the incredible changes in the structure of organisms that have occurred during the history of life on Earth.”

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

Further reports about: Evolutionary Jones Sex Trait brood deposit mate mating pipefish pouch pregnancy species steps

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>