Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UIC scientists discover how some bacteria survive antibiotics

05.05.2008
Researchers at the University of Illinois at Chicago have discovered how some bacteria can survive antibiotic treatment by turning on resistance mechanisms when exposed to the drugs. The findings, published in the April 24 issue of the journal Molecular Cell, could lead to more effective antibiotics to treat a variety of infections.

"When patients are treated with antibiotics some pathogenic microbes can turn on the genes that protect them from the action of the drug," said Alexander Mankin, professor and associate director of the University of Illinois at Chicago's Center for Pharmaceutical Biotechnology and lead investigator of the study. "We studied how bacteria can feel the presence of erythromycin and activate production of the resistance genes."

Erythromycin and newer macrolide antibiotics azithromycin and clarithromycin are often used to treat respiratory tract infections, as well as outbreaks of syphilis, acne and gonorrhea. The drugs can be used by patients allergic to penicillin.

Macrolide antibiotics act upon the ribosomes, the protein-synthesizing factories of the cell. A newly-made protein exits the ribosome through a tunnel that spans the ribosome body. Antibiotics can ward off an infection by attaching to the ribosome and preventing proteins the bacterium needs from moving through the tunnel.

... more about:
»Infection »antibiotic »bacteria »genes »ribosome

Some bacteria have learned how to sense the presence of the antibiotic in the ribosomal tunnel, and in response, switch on genes that make them resistant to the drug, Mankin said. The phenomenon of inducible antibiotic expression was known decades ago, but the molecular mechanism was unknown.

Mankin and his team of researchers -- Nora Vazquez-Laslop, assistant professor in the Center for Pharmaceutical Biotechnology, and undergraduate student Celine Thum -- used new biochemical and genetic techniques to work out the details of its operation.

"Combining biochemical data with the knowledge of the structure of the ribosome tunnel, we were able to identify some of the key molecular players involved in the induction mechanism," said Vazquez-Laslop.

"We only researched response to erythromycin-like drugs because the majority of the genetics were already known," she said. "There may be other antibiotics and resistance genes in pathogenic bacteria regulated by this same mechanism. This is just the beginning."

Sam Hostettler | EurekAlert!
Further information:
http://www.uic.edu

Further reports about: Infection antibiotic bacteria genes ribosome

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>