Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Anti-Gas Grass May Help Tackle Global Warming

05.05.2008
Grass that may help tackle global warming by cutting the level of methane given off by cows is being developed by scientists reports the latest issue of the Society of Chemical Industry’s (SCI) magazine Chemistry & Industry.

Scientists at Gramina, a joint biotech venture by Australia’s Molecular Plant Breeding Cooperative Research Centre and New Zealand rural services group PGG Wrightson Genomics, are developing a grass that will not only cut the amount of methane cows burp up when chewing the cud but also grow in hotter climes.

This means that farmers should be able to maintain dairy herds’ productivity and profitability in the face of a changing climate, while cutting down their gaseous burps and reducing their contribution to global warming.

Combating greenhouse gas emissions produced by the agricultural industry is a priority. The UK’s DEFRA has just announced a roadmap aimed at helping the dairy industry reduce its potential impact on the environment in line with Britain’s target to cut its greenhouse emissions by 20% by 2010. By 2015 the roadmap plans to have 20-30% of milk producers trialling new technology to cut greenhouse gas emissions.

... more about:
»Increase »Methane »emissions »greenhouse

The Inter-governmental Panel on Climate Change (IPCC) calculates that methane makes up 14.3% of humanity’s contribution to global warming and data from the National Oceanographic and Atmospheric Administration (NOAA) in the US shows that atmospheric methane levels may be rising again after a 10 year period of stability. A single dairy cow can produce between 550-700L of methane a day and it has been estimated that methane from cattle in the UK could account for as much as 3% of the country’s total greenhouse gas emissions.

Cows’ production of methane is down to the microflora in their gut that helps them to digest their food. As these microbes break down the grass’ cellulose, methane is produced as a by-product, the majority of which is burped up.

David Beever, international nutrition director of Richard Keenan UK, said: ‘You don’t actually hear the cows burp, but they are permanently releasing methane.’

Gramina will use sense suppression technology to prevent the expression of the enzyme O-methyl transferase. Suppressing this enzyme leads to an increase in the digestibility of the grass without compromising its structural properties and therefore less burps and less methane.

Gramina has already tested this modification in temperate grasses in the lab and glasshouses and is now planning field trials.

However, some scientists suggest that a cow’s absolute methane emissions might go up.

Alistair Macrae, a lecturer in farm animal health and production at the University of Edinburgh, UK, says a diet too rich in highly digestible carbs can actually increase the amount of methane a cow belches out. This is because gut microflora convert more of these sugars into propionic acid, which creates a more acidic environment resulting in more methane.

Ian Givens, a professor of animal science, at the University of Reading, UK, says that more digestible forage could push up a cow’s absolute methane emissions but productivity gains would mean less methane per unit of milk.

Beever agrees and says, ‘It could increase methane emissions but it could also increase milk yields, effectively cutting the amount of methane produce per litre of milk.’

Meral Nugent | alfa
Further information:
http://www.soci.org

Further reports about: Increase Methane emissions greenhouse

More articles from Life Sciences:

nachricht Researchers find new mutation in the leptin gene
24.06.2019 | Texas Biomedical Research Institute

nachricht Straight to the heart
24.06.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

Non-invasive view into the heart

24.06.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>