Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene sequence that can make half of us fatter is discovered

05.05.2008
A gene sequence linked to an expanding waist line, weight gain and a tendency to develop type 2 diabetes has been discovered as part of a study published today in the journal Nature Genetics.

The study also shows that the gene sequence is significantly more common in those with Indian Asian than European ancestry. The research, which was funded by the British Heart Foundation, could lead to better ways of treating obesity.

Scientists from Imperial College London and other international institutions have discovered that the sequence is associated with a 2cm expansion in waist circumference, a 2kg gain in weight, and a tendency to become resistant to insulin, which can lead to type 2 diabetes. The sequence is found in 50% of the UK population.

“Until now, we have understood remarkably little about the genetic component of common problems linked with obesity, such as cardiovascular disease and diabetes,” said Professor Jaspal Kooner, the paper’s senior author from the National Heart and Lung Institute at Imperial College London. “Finding such a close association between a genetic sequence and significant physical effects is very important, especially when the sequence is found in half the population.”

... more about:
»Cardiovascular »Genetic »discovered »obesity

The study shows that the sequence is a third more common in those with Indian Asian than in those with European ancestry. This could provide a possible genetic explanation for the particularly high levels of obesity and insulin resistance in Indian Asians, who make up 25% of the world’s population, but who are expected to account for 40% of global cardiovascular disease by 2020.

The new gene sequence sits close to a gene called MC4R, which regulates energy levels in the body by influencing how much we eat and how much energy we expend or conserve. The researchers believe the sequence is involved in controlling the MC4R gene, which has also been implicated in rare forms of extreme childhood obesity.

Previous research on finding the genetic causes of obesity has identified other energy-conserving genes. Combining knowledge about the effects of all these genes could pave the way for transforming how obesity is managed.

“A better understanding of the genes behind problems such as diabetes and cardiovascular disease means that we will be in a good position to identify people whose genetic inheritance makes them most susceptible,” added Professor Kooner. “We can’t change their genetic inheritance. But we can focus on preventative measures, including life-style factors such as diet and exercise, and identifying new drug targets to help reduce the burden of disease.“

The research was carried out as part of the London Life Sciences Population (LOLIPOP) study of environmental and genetic causes of cardiovascular disease, diabetes and obesity in approximately 30,000 UK citizens of Indian Asian and European ancestry. The scientists looked at the association between unique genetic markers, called single nuclear polymorphisms, and physical traits linked with obesity, such as waist circumference and insulin resistance.

“The studies we carry out through LOLIPOP are providing unique and important data,” explained lead author Dr John Chambers from the Department of Epidemiology and Public Health at Imperial College London. “The number of people involved, the comparisons between two ancestries, and the detail with which we can explore genetic and environmental effects are helping us identify crucial linkages.”

This research was carried out by scientists at Imperial College London, University of Michigan, USA, and the Pasteur Institute, France.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

Further reports about: Cardiovascular Genetic discovered obesity

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>