Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harmful blood glucose levels linked to defective gene

02.05.2008
A genetic mutation that can raise the amount of glucose in a person's blood to harmful levels is identified today in a study in the journal Science.

High levels of blood glucose increase the risk of cardiovascular disease and early death, even in healthy people who do not have diabetes and whose blood glucose levels are at the higher end of the range considered 'normal' by doctors. One in five people in the UK has a high blood glucose level.

The study, by researchers from Imperial College London, the French National Research Institute and McGill University in Canada, reveals an association between high levels of blood glucose and a mutation in a gene known as G6PC2 or IGRP.

The research shows that the mutated IGRP gene blocks the action of a sensor called glucokinase. By stopping glucokinase from doing its job, the gene prevents the body from keeping tight control over its levels of blood glucose. Glucokinase works by signalling to cells known as beta cells which then secrete insulin to keep blood glucose levels under control.

... more about:
»Genetic »Glucose »IGRP »Mutation »blood

The researchers hope their findings could enable a therapy to be developed to stop the defective IGRP gene from blocking the glucokinase sensor. This would restore control of glucose levels in the blood and help prevent these levels from becoming too high.

The researchers believe that the mutation in the IGRP gene could cause an increase of around five percent in the level of glucose in the blood. This small percentage increase would be enough to raise a person's risk of health problems because levels of blood glucose are so tightly controlled.

Epidemiological studies have shown that 80 percent of the risk of cardiovascular disease is related to a blood glucose level just above the average. High blood glucose levels are linked to obesity, poor nutrition and lack of exercise.

Professor Philippe Froguel, leading author of the research from the French National Research Institute and the Department of Genomic Medicine at Imperial College London, said: "Having a high level of blood glucose is a bit like having high cholesterol or high blood pressure in that the higher the level, the greater your risk of serious health problems. Our study helps unravel the genetic reasons why some people have higher levels of glucose in their blood than others.

"At present, doctors advise people with high blood glucose levels to lose weight and exercise. We hope that ultimately our research will mean we can develop new treatments to stop people from developing high blood glucose levels, which would enable them to live longer and healthier lives," added Professor Froguel.

The scientists reached their conclusions after comparing the genetic makeup of 654 non diabetic people with differing levels of blood glucose, from the low to the high end of the 'normal' range. The researchers looked at mutations in the building blocks, called

nucleotides, which make up DNA.

There are mutations, known as single-nucleotide polymorphisms, in around one in every 600 nucleotides. The scientists examined over 392,000 of these mutations to find the ones specific to high blood glucose levels. The researchers confirmed their findings by analysing the genetic makeup of a further 8000 individuals with blood glucose levels within the non diabetic range, to verify that the same genetic mutations were visible in these individuals.

Today's study follows on from a study published in February 2007 by the same team, where they identified the most important genes associated with a risk of developing type-2 diabetes.

The research was funded by Genome Canada, Genome Quebec, the French National Agency for Research, the Medical Research Council and the National Academia of Finland.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

Further reports about: Genetic Glucose IGRP Mutation blood

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>