Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single-celled bacterium works 24-7

30.04.2008
Converting light to energy by day, moonlighting at night

Researchers at Washington University in St. Louis have gained the first detailed insight into the way circadian rhythms govern global gene expression in Cyanothece, a type of cyanobacterium (blue-green algae) known to cycle between photosynthesis during the day and nitrogen fixation at night.

In general, this study shows that during the day, Cyanothece increases expression of genes governing photosynthesis and sugar production, as expected. At night, however, Cyanothece ramps up the expression of genes governing a surprising number of vital processes, including energy metabolism, nitrogen fixation, respiration, the translation of messenger RNA (mRNA) to proteins and the folding of these proteins into proper configurations.

Cyanothece is a unicellular bacterium that can capture energy from light and also fix atmospheric nitrogen. As part of a daily diurnal cycle, Cyanothece stores the products of photosynthesis and nitrogen fixation so that they can be used at the proper time. This ability makes Cyanothece an ideal system to understand how a unicellular organism balances and regulates complex processes in the same cell.

The findings have implications for energy production and storage of clean, alternative biofuels.

The study was published in the April online issue of the Proceedings of the National Academy of Science. The research was funded by the U.S. Department of Energy in the context of a Biology Grand Challenge project administered by the Environmental Molecular Sciences Laboratory at the Pacific Northwest National Laboratory.

Bacterial biological clock

"One of the mysteries in cellular physiology is this business of rhythm," said Himadri Pakrasi, Ph.D., the George William and Irene Koechig Freiberg Professor in Arts & Sciences and lead investigator of this project. "Circadian rhythm controls many physiological processes in higher organisms, including plants and people. Cyanothece are of great interest because, even though one cell lives less than a day, dividing every 10 to 14 hours, together they have a biological clock telling them when to do what over a 24-hour period. In fact, cyanobacteria are the only bacteria known to have a circadian behavior."

Why does such a short-lived, single-celled organism care what time it is? The answer, according to this study, is that the day-night cycle has a tremendous impact on the cell's physiology, cycling on and off many vital metabolic processes, not just the obvious ones.

Among the obvious cycling processes are photosynthesis and nitrogen fixation. It is difficult for one cell to perform these two functions because the processes are at odds with one another. Fixing nitrogen requires nitrogenase, a catalyst that helps the chemical reaction move forward. Unhelpfully, the oxygen produced by photosynthesis degrades nitrogenase, making nitrogen fixation difficult or impossible in photosynthetic organisms.

Other filamentous cyanobacteria perform photosynthesis and nitrogen fixation in different, separate cells. As a single-celled bacterium, however, Cyanothece cannot separate these antagonistic processes in space. But it can separate them in time.

Agreeing with previous studies, this study found that Cyanothece genes for photosynthesis turn on during the day and genes for nitrogen fixation turn on at night. The surprise is the tremendous impact the day-night cycle has on the overall physiology of the cell.

"It goes far beyond just the aspects of nitrogen fixation and photosynthesis," said Pakrasi, who also directs Washington University's International Center for Advanced Renewable Energy and Sustainability (I-CARES) to encourage and coordinate university-wide and external collaborative research in the areas of renewable energy and sustainability — including biofuels, carbon dioxide mitigation and coal-related issues. The university will invest more than $55 million in the initiative.

Cyanothece's 'Dark Period'

To see the effect of day-night cycles on the overall physiology of Cyanothece, lead author Jana Stöckel, Ph.D., Washington University post-doctoral researcher, and other members of this research team examined the expression of 5,000 genes, measuring the amount of messenger RNA for each gene in alternating dark and light periods over 48 hours. At a given time, the mRNA levels indicated what the cells were doing. For example, when the researchers identified high levels of many mRNAs encoding various protein components of the nitrogenase enzyme, they knew that the cells were fixing nitrogen at that time, in this case, during the dark periods.

Of the 5,000 genes studied, nearly 30 percent cycled on and off with changing light and dark periods. These particular genes, the study found, also govern major metabolic processes. Therefore, the cycling of mRNA transcription, Pakrasi said, "provides deep insight into the physiological behavior of the organism — day and night."

During the day, Cyanothece busies itself with photosynthesis. Using energy from sunlight, carbon dioxide from the atmosphere, and water, Cyanothece produces glucose, a sugar it stores in glycogen granules, filling its chemical gas tank. At night, the Cyanothece ramps up production of nitrogenase to fix nitrogen, as expected. Since nitrogen fixation requires a lot of energy, Cyanothece uses the glycogen stored through a process called respiration. Because respiration requires oxygen, the cells conveniently use up this by-product of photosynthesis, likely helping to protect nitrogenase from degradation.

Through this cyclic expression of genes, Cyanothece is essentially a living battery, storing energy from the sun for later use. This feat continues to elude scientists searching for ways to harness sunlight and produce energy on a large scale. With this in mind, a new project for the Pakrasi team seeks to use the machinery of Cyanothece — its energy storage strategy, its anaerobic conditions that protect important enzymes — as a biofactory to produce hydrogen from sunlight, the ultimate clean energy source.

Gayle Geren | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: Cyanothece Expression Nitrogenase Pakrasi Protein bacterium fixation mRNA nitrogen organism photosynthesis

More articles from Life Sciences:

nachricht First use of vasoprotective antibody in cardiogenic shock
17.05.2019 | Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.

nachricht A nerve cell serves as a “single” for studies
15.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>