Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue-specific blood stem cell line established from embryonic stem cells

28.04.2008
A research team at the Umeå Center for Molecular Medicine (UCMM) in Sweden, led by Professor Leif Carlsson, has managed to specifically establish and isolate the tissue-specific stem cell that produces blood cells (blood stem cell) by using genetically modified embryonic stem cells.

A deeper understanding of the regulation of blood stem cells is important if we are to be able to further develop treatments for diseases that require bone marrow transplants, such as leukemia, immune deficiencies, and anemia disorders.

Blood stem cells are unique in that they can both continually generate all types of blood cells and also produce new stem cells, so-called self-regeneration. These two properties are the basic reason why we have a functioning blood system throughout our lives and why bone marrow transplants are a functional treatment method.

An understanding of how tissue-specific stem cells are produced and regulated is absolutely essential for us to be able to develop forms of treatment in so-called regenerative medicine, that is, where damaged tissue needs to be replaced by new tissue. On source of transplantable cells for this purpose is embryonic stem cells, since they have a unique capacity to generate different types of tissues. But one of the major problems with embryonic stem cells is to be able to establish and isolate tissue-specific stem cells, such as blood stem cells, from these cells in a reproducible manner.

... more about:
»Embryonic »Treatment »blood »stem cells

Even though the process of self-regeneration is well known, the molecular mechanisms that underlie it are largely unknown. The fact that it is now possible to establish and isolate blood stem cells from embryonic stem cells in a reproducible way will yield key insights into the molecular mechanisms that regulate the function of blood stem cells and will thereby lead to enhanced methods of treatment for patients who need bone marrow transplants, such as leukemia patients.

For more information, please contact Prof. Leif Carlsson, Umeå Center for Molecular Medicine (UCMM), phone: +46 (0)90-785 44 36 or e-mail: leif.carlsson@ucmm.umu.se.

Pressofficer Bertil Born; bertil.born@adm.umu.se; +46-703 886 058

Ingemar Björklund | idw
Further information:
http://expertsvar.se
http://www.plosone.org/doi/pone.0002025

Further reports about: Embryonic Treatment blood stem cells

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>