Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanisms of memory identified

25.04.2008
Major step forward in understanding how memory works

Our ability to remember the objects, places and people within our environment is essential for everyday life, although the importance of this is only fully appreciated when recognition memory beings to fail, as in Alzheimer’s disease.

By blocking certain mechanisms that control the way that nerve cells in the brain communicate, scientists from the University of Bristol have been able to prevent visual recognition memory in rats.

This demonstrates they have identified cellular and molecular mechanisms in the brain that may provide a key to understanding processes of recognition memory. The research is published online today [23 April] in Neuron.

... more about:
»Brain »Molecular »Visual »plasticity »processes »synaptic

Zafar Bashir, Professor of Cellular Neuroscience, who led the team at Bristol University said: “This is a major step forward in our understanding of recognition memory. We have been able to show that key processes controlling synaptic communication are also vital in learning and memory.”

The ability to recognise elements in the surrounding environment such as faces or places, as well as the ability to learn about that environment, is crucial to our normal functioning in the world. But the actual mechanisms and changes that occur in the brain and allow learning to happen are still not very well understood.

One hypothesis is that changes at the specialised junctions (synapses) between nerve cells in the brain, hold the secrets to learning and memory. The change in the strength of communication between synapses is called synaptic plasticity and, it is believed, the mechanisms of synaptic plasticity may be important for learning and memory. Bashir and his colleagues tested this hypothesis.

Dr Sarah Griffiths, lead author on the paper, explained: “Nerve cells in the perirhinal cortex of the brain are known to be vital for visual recognition memory. Using a combination of biological techniques and behavioural testing, we examined whether the mechanisms involved in synaptic plasticity are also vital for visual recognition memory.”

In their experiments, they were able to identify a key molecular mechanism that controls synaptic plasticity in the perirhinal cortex. They then demonstrated that blocking the same molecular mechanism that controls synaptic plasticity also prevented visual recognition memory in rats. This shows that such memory relies on specific molecular processes in the brain.

Professor Bashir added: “The next step is to try to understand the processes that enable visual memories to be held in our brains for such long periods of time, and why these mechanisms begin to break down in old age.”

Cherry Lewis | EurekAlert!
Further information:
http://www.bristol.ac.uk

Further reports about: Brain Molecular Visual plasticity processes synaptic

More articles from Life Sciences:

nachricht New eDNA technology used to quickly assess coral reefs
18.04.2019 | University of Hawaii at Manoa

nachricht New automated biological-sample analysis systems to accelerate disease detection
18.04.2019 | Polytechnique Montréal

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>