Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify genes associated with aging of the retina

26.06.2002


University of Michigan Kellogg Eye Center researchers have found that the aging of the human retina is accompanied by distinct changes in gene expression.



Using commercially available DNA slides, a team of researchers directed by Anand Swaroop, Ph.D., have established the first-ever gene profile of the aging human retina, an important step in understanding the mechanisms of aging and its impact on vision disorders.

In the August issue of Investigative Ophthalmology and Visual Science, Swaroop and colleagues show that retinal aging is associated, in particular, with expression changes of genes involved in stress response and energy metabolism.


The term gene expression means that in any given cell, only a portion of the genes are expressed or switched on. For example, a person’s pancreas and retina have the same genes, but only the pancreas can turn on the genes that allow it to make insulin.

Swaroop believes that the findings will help scientists understand whether age predisposes one to changes in the retina that, in turn, lead to age-related diseases. For vision researchers, one of the most pressing disorders is age-related macular degeneration (AMD), a progressive eye disease that affects the retina and results in the loss of one’s fine central vision.

"While we still don’t know what causes AMD, we do know that the strongest factors are age and family history," says. Swaroop. "We are likely to find that AMD is caused by a complex interaction between genetic and environmental risk factors."

Microarray technology is an important tool for gene profiling because it allows rapid comparison of thousands of genes, something that was unheard of even few years ago. Shigeo Yoshida, M.D., Ph.D., a post-doctoral research fellow in Swaroop’s laboratory, examined microarray slides containing DNA from 2,400 human genes.

After identifying the genes expressed in the retina (about half, or 1,200 genes), the researchers compared the expression of these retinal genes in young and old individuals and concluded that expression of 24 genes were altered during aging.

Swaroop wonders whether some people carry genetic variations or weaknesses that are expressed clinically later in life. For such persons, the aging process may trigger or reveal the variation, which may then lead to AMD. By contrast, a person who does not carry the variation may undergo a similar degree of genetic or cellular deterioration from aging, without triggering the disease.

A logical next step for the Kellogg researchers is to study a wider array of genes, which Swaroop hopes will lead to a broader understanding of the molecular events that modulate aging of the retina. Under Swaroop’s direction, the U-M Kellogg Eye Center has established a Gene Microarray Facility, which is now generating microarrays of thousands of eye genes.

Kara Gavin | EurekAlert!

More articles from Life Sciences:

nachricht X-ray scattering shines light on protein folding
10.07.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht Surprisingly many peculiar long introns found in brain genes
10.07.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>