Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New OLED encapsulation method reduces water intrusion and increases lifetime

24.04.2008
Researchers have developed an improved organic light emitting diode (OLED) sealing process to reduce moisture intrusion and improve device lifetime.

OLEDs are promising for the next generation of displays and solid state lighting because they use less power and can be more efficiently manufactured than current technology. However, the intrusion of moisture into the displays can damage or destroy an OLED’s organic material.

“OLEDs have better color and flexibility and the capability of larger displays, but companies still need an inexpensive encapsulation method that can be used to mass produce organic electronics that don’t allow moisture in,” said Wusheng Tong, a senior research scientist at the Georgia Tech Research Institute (GTRI).

Manufacturers now seal displays in an inert atmosphere or in a vacuum environment. They glue a glass lid on top of the display substrate with a powder inside the display to absorb moisture that diffuses through the glue. These seals are expensive and labor-intensive to assemble.

... more about:
»Intrusion »OLED »Organic »Tong »encapsulation

With funding from GTRI’s independent research and development program, Tong and his GTRI collaborators – senior research scientist Hisham Menkara and principal research scientist Brent Wagner – have replaced the glass enclosure with a thin-film barrier formed by a less expensive conventional deposition method.

“We chose a passivation coating process that could be performed at room temperature so that the organic material remained intact,” said Tong.

The researchers selected advanced ion assisted deposition, which utilizes reactive ions to deposit a high-density, pinhole-free thin silicon oxynitride (SiON) film on the OLED surface.

“Ideally, the film should be as thin as possible, but if it’s too thin, a pinhole or other defect could appear and cause a problem,” explained Tong. “We found that a film of 50-200 nanometer thickness was perfect.”

During testing, the SiON-encapsulated OLEDs showed no sign of degradation after seven months in an open-air environment, while the OLEDs without the coating degraded completely in less than two weeks under the same conditions.

When Tong conducted accelerating aging tests in an environmental chamber that maintained a temperature of 50 degrees Celsius and 50 percent relative humidity, the OLEDs encapsulated with SiON films showed little degradation for at least two weeks. The OLEDs without encapsulation, however, decomposed immediately.

“We’ve demonstrated that this deposition process improves the lifetime of the OLEDs by blocking the intrusion of moisture, so now we’re hoping to work with industry partners to develop a mass production process for our encapsulation technique,” added Tong.

Abby Vogel | EurekAlert!
Further information:
http://www.gatech.edu

Further reports about: Intrusion OLED Organic Tong encapsulation

More articles from Life Sciences:

nachricht Good preparation is half the digestion
15.11.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht How the gut ‘talks’ to brown fat
16.11.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>