Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Missing Link" Molecule May Offer Clues To Sulfur In Air, Space

26.06.2002


This model depicts hydrogen thioperoxide, or HSOH, a molecule thought to be a "missing link" in its chemical family. Here gray represents hydrogen atoms, yellow a sulfur atom, and red an oxygen atom. Ohio State University physicists and their colleagues in Germany were the first to synthesize the molecule in the laboratory, and record its unique spectrum.
Graphic courtesy of Ohio State University.


A study at Ohio State University is probing the nature of a unique sulfur-containing molecule -- one that scientists consider a "missing link" in its chemical family.

The molecule, hydrogen thioperoxide, or HSOH for short, is related to the common bleaching and disinfectant agent hydrogen peroxide. Because HSOH contains sulfur, it could eventually help scientists understand how pollutants form in Earth’s atmosphere, and how similar molecules form in outer space.

Scientists presented an initial study of the molecule June 18, 2002, at the annual International Symposium on Molecular Spectroscopy at Ohio State University.



A special laboratory instrument is allowing physicists here to study the molecule in detail for the first time. Frank De Lucia, professor of physics at Ohio State, and his colleagues designed the instrument to utilize their FAST Scan Submillimeter Spectroscopy Technique (FASSST).

The technique offers a quick way for scientists to examine the spectrum of light given off by a molecule. Each molecule has its own one-of-a-kind spectral pattern. FASSST takes a snapshot of a wide range of spectral wavelengths, so scientists can easily recognize the pattern of the molecule they are looking for.

Since the 1960’s, scientists have speculated that a sulfur molecule like HSOH could exist in Earth’s upper atmosphere and outer space. Coal burning power plants, for instance, release sulfur from smokestack exhaust, and HSOH’s other main ingredient -- water -- is abundant in the atmosphere.

But no one was able to synthesize the HSOH in the laboratory until Markus Behnke, a graduate student at the University of Cologne, Germany, did so in 2001. His collaborators on the HSOH synthesis project included Josef Hahn, Gisbert Winnewisser, and Sven Thorwirth at the University of Cologne, and Jürgen Gauss at Johannes Gutenberg University in Mainz, Germany.

Behnke, now a postdoctoral researcher at Ohio State, explained that HSOH is considered a "missing link" molecule. With its mixture of hydrogen, oxygen, and sulfur, it exists somewhere between simple, sulfur-free molecules such as hydrogen peroxide and more complex molecules like sulfuric acid.

In his symposium presentation this week, Behnke reported the first detailed spectroscopic identification of HSOH using FASSST.

The molecule was very difficult to study, because it exists only in extreme conditions: it is created during combustion at very high temperatures, but it breaks down unless it can be transferred quickly to an environment with very low temperature and pressure, such as the upper atmosphere. In addition, the chemical reaction that creates HSOH creates many other similar molecules at the same time.

Given those circumstances, synthesizing HSOH and recording its spectrum in the laboratory wasn’t so much like looking for a needle in a haystack as "looking for an ant somewhere in Canada," Behnke said.

The Ohio State physicists were able to create the molecule in a high-temperature chemical reaction -- approximately 1100°C (2000°F), and used FASSST to image the spectrum.

Scientists could one day use information about HSOH to better understand combustion, atmospheric pollution, and interstellar chemistry.

"This is very fundamental research," Behnke said, "but knowing the structure of simple molecules like HSOH could give us the foundation to understand more complex molecules later."

The National Science Foundation funded this work.

#

Contact: Markus Behnke, (614) 292-1971; Behnke.14@osu.edu
Frank De Lucia, (614) 688-4774; Delucia.2@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Markus Behnke | EurekAlert!
Further information:
http://www.osu.edu/
http://www.nsf.gov/
http://molspect.mps.ohio-state.edu/symposium/

More articles from Life Sciences:

nachricht Chip-based optical sensor detects cancer biomarker in urine
06.12.2019 | The Optical Society

nachricht Scientist identify new marker for insecticide resistance in malaria mosquitoes
06.12.2019 | Liverpool School of Tropical Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>