Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pathogen virulence proteins suppress plant immunity

23.04.2008
Researchers from the Virginia Bioinformatics Institute (VBI) at Virginia Tech and their colleagues have identified a key function of a large family of virulence proteins that play an important role in the production of infectious disease by the plant pathogen Phytophthora sojae.

VBI Professor Brett Tyler and members of his research group, along with researchers from Virginia Tech’s Department of Plant Pathology, Physiology and Weed Science, Nanjing Agricultural University in China, and Wageningen University in The Netherlands, examined the function of the virulence (or effector) protein Avr1b in P. sojae and discovered that Avr1b is capable of suppressing an important process in plant immunity called programmed cell death. Programmed cell death is an in-built suicide mechanism that kills infected plant tissue and fills it with toxins so the pathogen can no longer feed on it. The work appears in the advance online edition of The Plant Cell. (1)

P. sojae is an oomycete plant pathogen that causes severe damage to soybean crops, resulting in $1-2 million in annual losses for commercial farmers in the United States and much more worldwide. By changing key amino acid residues in the effector protein, the researchers were able to attribute the cause of the suppression of programmed cell death to the presence of two conserved sequences (dubbed W and Y motifs) at one particular end of the protein, the C-terminus. These amino acid sequences are also present in many other members of a huge virulence gene superfamily that Tyler’s group found recently in oomycete pathogens. (2)

According to VBI Professor Brett Tyler, “Our results suggest that, like many human viruses such as HIV, oomycete plant pathogens disable the immune systems of their victims as part of their infection strategy.”

... more about:
»Pathogen »effector »sojae »virulence

The research was supported by funding from the National Research Initiative of the United States Department of Agriculture’s Cooperative State Research, Education and Extension Service, the National Science Foundation, the Government of China, and the Netherlands Genomics Initiative.

(1) Daolong D, Kale SD, Wang X, Chen Y, Wang Q, Wang X, Jiang RHY, Arredondo FD, Anderson RG, Thakur PB, McDowell JM, Wang Y, Tyler BM (2008) Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b. The Plant Cell Published on April 4, 2008; 10.1105/tpc.107.057067.

(2) Jiang R, Tripathy S, Govers F, Tyler BM (2008) RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc. Natl Acad. Sci. USA 105(12): 4874-4879.

Susan Bland | EurekAlert!
Further information:
http://www.vbi.vt.edu

Further reports about: Pathogen effector sojae virulence

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>