Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pathogen virulence proteins suppress plant immunity

23.04.2008
Researchers from the Virginia Bioinformatics Institute (VBI) at Virginia Tech and their colleagues have identified a key function of a large family of virulence proteins that play an important role in the production of infectious disease by the plant pathogen Phytophthora sojae.

VBI Professor Brett Tyler and members of his research group, along with researchers from Virginia Tech’s Department of Plant Pathology, Physiology and Weed Science, Nanjing Agricultural University in China, and Wageningen University in The Netherlands, examined the function of the virulence (or effector) protein Avr1b in P. sojae and discovered that Avr1b is capable of suppressing an important process in plant immunity called programmed cell death. Programmed cell death is an in-built suicide mechanism that kills infected plant tissue and fills it with toxins so the pathogen can no longer feed on it. The work appears in the advance online edition of The Plant Cell. (1)

P. sojae is an oomycete plant pathogen that causes severe damage to soybean crops, resulting in $1-2 million in annual losses for commercial farmers in the United States and much more worldwide. By changing key amino acid residues in the effector protein, the researchers were able to attribute the cause of the suppression of programmed cell death to the presence of two conserved sequences (dubbed W and Y motifs) at one particular end of the protein, the C-terminus. These amino acid sequences are also present in many other members of a huge virulence gene superfamily that Tyler’s group found recently in oomycete pathogens. (2)

According to VBI Professor Brett Tyler, “Our results suggest that, like many human viruses such as HIV, oomycete plant pathogens disable the immune systems of their victims as part of their infection strategy.”

... more about:
»Pathogen »effector »sojae »virulence

The research was supported by funding from the National Research Initiative of the United States Department of Agriculture’s Cooperative State Research, Education and Extension Service, the National Science Foundation, the Government of China, and the Netherlands Genomics Initiative.

(1) Daolong D, Kale SD, Wang X, Chen Y, Wang Q, Wang X, Jiang RHY, Arredondo FD, Anderson RG, Thakur PB, McDowell JM, Wang Y, Tyler BM (2008) Conserved C-terminal motifs required for avirulence and suppression of cell death by Phytophthora sojae effector Avr1b. The Plant Cell Published on April 4, 2008; 10.1105/tpc.107.057067.

(2) Jiang R, Tripathy S, Govers F, Tyler BM (2008) RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc. Natl Acad. Sci. USA 105(12): 4874-4879.

Susan Bland | EurekAlert!
Further information:
http://www.vbi.vt.edu

Further reports about: Pathogen effector sojae virulence

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>