Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fox Chase researchers discover a method for clamping down on a cancer-promoting enzyme

22.04.2008
There are many pathways that allow an errant gene to turn a cell cancerous, and a number of these pathways go through a single enzyme called the p21-activated kinase 1, or PAK1.

Researchers at Fox Chase Cancer Center have now identified a molecule capable of shutting down PAK1 before the enzyme becomes active. Previous studies have linked PAK1 activity with breast cancer and have shown the enzyme is important in pathways involving the ras oncogene, which is thought to cause up to 30 percent of all cancers.

In the April 24 issue of the journal Chemistry & Biology, the researchers detail how the molecule, called IPA-3, was found from a screen of nearly 33,000 small molecules, and could serve as a basis for future breast cancer or cancer therapeutics. Cell-based studies using IPA-3 confirm that the molecule is capable of blocking signaling by the PAK1 pathway.

“Previous work suggested that hyperactive signaling by PAK1 can contribute to the growth of tumors, but the trick is how to selectively block PAK1 without damaging similar enzymes that are crucial for healthy cellular function,” said lead investigator Jeffrey R. Peterson, Ph.D, an associate member of Fox Chase. “IPA-3 represents a proof-of-principle, illustrating a new and highly selective approach to targeting PAK1.”

... more about:
»Active »IPA-3 »Kinase »PAK1 »Peterson »bind »enzyme »therapeutic

PAK1, like all kinases, is an enzyme that regulates other proteins by attaching an energetic molecule to them in a process known as phosphorylation. The “active site” where the phosphorylation reaction occurs is an attractive target for drug development, since blocking the active site would deactivate the enzyme. Unfortunately, the active site of PAK1 shares a molecular architecture similar to that found in many other kinase enzymes. Previous attempts to inhibit the PAK1 active site chemically have also resulted in inhibiting PAK1-related enzymes, with toxic consequences.

Instead of finding another molecule that binds to the active site, Peterson and his Fox Chase colleagues looked for new molecules that inactivate PAK1 in other ways. The cancer drug Gleevec, for example, is unusually selective for its target by binding to a region outside of the active site that is less common among kinases.

“Many other kinases, including PAK1, have unique regions outside the active site that mediate important facets of their function such as localization, substrate recruitment, or regulation,” Peterson says. “We wondered whether these regions might offer other places for molecules to bind and inhibit PAK1 without affecting other enzymes.”

According to Peterson, IPA-3 achieves high selectivity for PAK1 by taking advantage of a unique self-regulating region of the enzyme. The PAK1 protein has an auto-regulatory arm, a structure that PAK1 folds over its own active site when the enzyme is not in use. Their findings suggest that IPA-3 binds to the protein when it is in the closed configuration, which then prevents PAK1 from becoming active.

“It is like when the Steve Irwin would subdue a crocodile, he would tape its jaws closed to keep it from biting,” Peterson says. “Likewise, IPA-3 latches onto PAK1 in a way that prevents PAK1 from exposing its active site.”

Peterson and his colleagues, found IPA-3 by screening a library of over 33,000 small molecules for their ability to block phosphorylation by pure PAK1 protein. Any small molecules that blocked PAK1 were noted and were then ranked by potency, reproducibility and commercial availability. IPA-3 came out ahead of the others through this winnowing process, and the researchers then tested IPA-3 to demonstrate that it could also inhibit PAK1 activity inside living cells.

The Fox Chase researchers believe that IPA-3 represents a promising new strategy for creating therapeutics that inhibit PAK1 by mimicking the way cellular enzymes self-regulate in real life, but the IPA-3 molecule itself is not suitable as a therapeutic in its current form. “IPA-3 requires further experimental study and refinement before it could become a working drug for humans,” Peterson says.

Greg Lester | EurekAlert!
Further information:
http://www.fccc.edu

Further reports about: Active IPA-3 Kinase PAK1 Peterson bind enzyme therapeutic

More articles from Life Sciences:

nachricht Cell Division at High Speed
19.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Monitoring biodiversity with sound: how machines can enrich our knowledge
18.06.2019 | Georg-August-Universität Göttingen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>