Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New strategies against bird flu

21.04.2008
Austrian scientists identify the common mechanism underlying acute respiratory disease syndrome ARDS

The Spanish flu outbreak of 1918 killed between 30 and 50 million people. In the infected patients, the ultimate cause of death was acute respiratory distress syndrome (ARDS). This fatal condition is a massive reaction of the body during which the lung becomes severely damaged. ARDS can be induced by various bacterial and viral infections, but also by chemical agents. These could be toxic gases that are inhaled or gastric acid when aspirated. Once ARDS has developed, survival rates drop dramatically. Among patients infected with H5N1 bird flu, about 50 percent die of ARDS.

An international team of scientists has been addressing the underlying disease mechanisms for the past five years. The team involved researchers from leading institutions in Vienna, Stockholm, Cologne, Beijing, Hongkong, and Toronto as well as the US-army at Fort Detrick. The international effort was coordinated by Josef Penninger and Yumiko Imai of the Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences.

A first breakthrough came in 2005 when IMBA-scientists identified ACE2 as the essential receptor for SARS virus infections and showed that ACE2 can protect from acute lung failure in disease models (Imai et al. Nature 2005; Kuba et al. Nature Medicine 2005). Based on these data, ACE2 is now under therapeutic development.

... more about:
»ARDS »Imai »TLR4 »acute »common »failure »flu

In a paper published by Cell this week, the authors describe an essential key injury pathway that is operational in multiple lung injuries and directly links oxidative stress to innate immunity. They also report for the first time a common molecular disease pathway explaining how diverse non-infectious and infectious agents such as anthrax, lung plague, SARS, and H5N1 avian influenza may cause severe and often lethal lung failure with similar pathologies.

To identify these pathways, the researchers studied numerous tissue samples from deceased humans and animals. Victims of bird flu and SARS were examined in Hongkong, and the US-army provided samples from animals infected with Anthrax and lung plague. Common to all ARDS samples was the massive amount of oxidation products found within the cells. Based on these findings, the scientists showed that oxidative stress is the common trigger that ultimately leads to lung failure.

To elucidate the entire pathway, Yumiko Imai of IMBA developed several mouse models. She was now able to show that a molecule called TLR4 (Toll-like receptor 4) is responsible for initiating the critical signalling pathway. TLR4 is displayed at the surface of certain lung cells called macrophages, important players of the body’s immune system. Once activated, TLR4 initiates an entire chain reaction which ends with the fatal failure of the lungs. Surprisingly, mice challenged with inactivated H5N1 avian influenza virus also dveloped the full reaction. On the other hand, mutant mice in which the function of TLR4 was genetically impaired were protected from lung failure in repsonse to the inactivated virus.

Based on these findings, the researchers can now outline a common molecular disease pathway: Microbial or chemical lung pathogens trigger the oxidative stress machinery. Oxidation products are intrepreted as danger-signals by the receptor TLR4. Subsequently, the body’s innate immune system is activated. This defense machinery in turn leads to a chain of reactions with severe and often fatal lung damage as a consequence.

For Yumiko Imai, a Postdoc in Josef Penninger’s team and pediatrician by training, these results are highly satisfying. Her motivation to study ARDS is based on personal experience in over 10 years at a pediatric intensive care unit. „I have seen so many children die from acute lung failure and felt utterly helpless“, Imai says. „ Since we found a common injury pathway, our hopes are high that we may be able to develop a new and innovative strategy for tackling severe lung infections.“

Dr. Heidemarie Hurtl | EurekAlert!
Further information:
http:// www.imba.oeaw.ac.at

Further reports about: ARDS Imai TLR4 acute common failure flu

More articles from Life Sciences:

nachricht Russian scientists show changes in the erythrocyte nanostructure under stress
22.02.2019 | Lobachevsky University

nachricht How the intestinal fungus Candida albicans shapes our immune system
22.02.2019 | Exzellenzcluster Präzisionsmedizin für chronische Entzündungserkrankungen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>