Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Charting the epigenome

21.04.2008
Salk researchers zoom in on genome-wide DNA methylation and transcriptomes at single base resolution

Until recently, the chemical marks littering the DNA inside our cells like trees dotting a landscape could only be studied one gene at a time. But new high-throughput DNA sequencing technology has enabled researchers at the Salk Institute for Biological Studies to map the precise position of these individual DNA modifications throughout the genome of the plant Arabidopsis thaliana, and chart its effect on the activity of any of Arabidopsis’ roughly 26,000 genes.

“For a long time the prevailing view held that individual modifications are not critical,” says Joseph Ecker, Ph.D., a professor in the Plant Biology laboratory and director of the Salk Institute Genomic Analysis Laboratory. “The genomes of higher eukaryotes are peppered with modifications but unless you can take a detailed look at a large scale there is no way of knowing whether a particular mark is critical or not.”

The Salk study, which appears today in the online issue of Cell, paints a detailed picture of a dynamic and ever-changing, yet highly controlled, epigenome, the layer of genetic control beyond the regulation inherent in the sequence of the genes themselves.

Being able to study the epigenome in great detail and in its entirety will provide researchers with a better understanding of plant productivity and stress resistance, the dynamics of the human genome, stem cells’ capacity to self-renew and how epigenetic factors contribute to the development of tumors and disease.

Discoveries in recent years made it increasingly clear that there is far more to genetics than the sequence of building blocks that make up our genes. Adding molecules such as methyl groups to the backbone of DNA without altering the letters of the DNA alphabet can change how genes interact with the cell’s transcribing machinery and hand cells an additional tool to fine-tune gene expression.

“The goal of our study was to integrate multiple levels of epigenetic information since we still have a very poor understanding of the genome-wide regulation of methylation and its effect on the transcriptome,” explains postdoctoral researcher and co-first author Ryan Lister, Ph.D.

The transcriptome encompasses all RNA copies or transcripts made from DNA. The bulk of transcripts consists of messenger RNAs, or mRNAs, that serve as templates for the manufacture of proteins but also includes regulatory small RNAs, or smRNAs. The latter wield their power over gene expression by literally cutting short the lives of mRNAs or tagging specific sequences in the genome for methylation.

But before Lister could start to unravel the multiple layers of epigenetic regulation that control gene expression, he had to pioneer new technologies that allowed him to look at genome-wide methylation at single-base resolution and to sequence the complete transcriptome within a reasonable timeframe.

Collaborating scientists at the ARC Centre of Excellence in Plant Energy Biology at the University of Western Australia in Perth developed a powerful, web-based genome browser, which played a crucial role in unlocking the information hidden in the massive datasets.

Cells employ a whole army of enzymes that add methyl groups at specific sites, maintain established patterns or remove undesirable methyl groups. When Lister and his colleagues compared normal cells with cells lacking different combination of enzymes they discovered that cells put a lot of effort in keeping certain areas of the genome methylation-free.

On the flipside, the Salk researchers found that when they knocked out a whole class of methylases, a different type of methylase would step into the breach for the missing ones. This finding is relevant for a new class of cancer drugs that work by changing the methylation pattern in tumor cells.

“You might succeed in removing one type of methylation but end up with increasing a different type,” says Ecker. “But very soon we will be able to look and see what kind of compensatory changes are happening and avoid unintended consequences.”

Previous studies had found that a subset of smRNAs could direct methylation enzymes to the region of genomic DNA to which they aligned. Overlaying genome-wide methylome and smRNA datasets confirmed increased methylation precisely within the stretch of DNA that matched the sequence of the smRNA. Conversely, heavily methylated smRNA loci tended to spawn more smRNAs.

“We looked at a plant genome but our method can be applied to any system, including humans,” says Lister. Although the human genome is about 20 times bigger than the genome of Arabidopsis – plant biologists’ favorite model system not least because of its compact genome – Ecker predicts that within a year or so, sequencing technology will have advanced far enough to put the 3 billion base pairs of the human genome and their methyl buddies within reach.

“This really is just the beginning of unmasking the role of these powerful epigenetic regulatory mechanisms in eukaryotes,” says Ecker.

Gina Kirchweger | EurekAlert!
Further information:
http://www.salk.edu

Further reports about: DNA Genome Lister RNA epigenetic epigenome genome-wide methyl methylation smRNA transcriptome

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>