Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mature B cells reprogrammed to stem-cell-like state

21.04.2008
Fully differentiated cells, can be reprogrammed to induced pluripotent stem cells

Fully mature, differentiated B cells can be reprogrammed to an embryonic-stem-cell-like state, without the use of an egg according to a study published in the April 18 issue of Cell.

In previous research, induced pluripotent stem (IPS) cells have been created from fibroblasts, a specific type of skin cells that may differentiate into other types of skin cells. Because there is no way to tell if the fibroblasts were fully differentiated, the cells used in earlier experiments may have been less differentiated and therefore easier to convert to the embryonic-stem-cell-like state of IPS cells.

B cells are immune cells that can bind to specific antigens, such as proteins from bacteria, viruses or microorganisms. Unlike fibroblasts, mature B cells have a specific part of their DNA cut out as a final maturation step. “Once that piece of DNA is cut out, it can’t come back,” says Jacob Hanna, first author on the paper and a postdoctoral fellow in Whitehead Member Rudolf Jaenisch’s lab. “Checking the genome give us a way to make sure the resulting IPS cells were not from immature cells.”

Hanna and his colleagues began the experiment by generating IPS cells from immature B cells. Similar to the process used to create IPS cells from fibroblast cells, Hanna successfully reprogrammed the immature B cells into IPS cells by using retroviruses to transfer four genes (Oct4, Sox2, c-Myc and Klf4) into the cells’ DNA.

However, an additional factor, CCAAT/enhancer-binding-protein-á (C/EBPá), was needed to nudge mature B cells to be reprogrammed as IPS cells.

Like IPS cells from earlier fibroblast studies, the IPS cells from both the mature and immature B cells could be used to create mice. The mice grown from the reprogrammed mature B cells were missing the same part of their DNA as the mature B cells, demonstrating that Hanna and his colleagues had successfully reprogrammed fully differentiated cells.

In addition to demonstrating the power of reprogramming, this work offers the promise of powerful new mouse models for autoimmune diseases such as multiple sclerosis and type 1 diabetes, in which the body attacks certain types of its own cells. For example, mature B or T cells specific for nerve cells called glia could be reprogrammed to IPS cells and then used to create mice with an entire immune system that is primed to only attack the glia cells, thereby creating a mouse model for studying multiple sclerosis.

Eventually, researchers will be able to study diseases by following a similar process with human cells, predicts Jaenisch, who is also a professor of biology at Massachusetts Institute of Technology. “In principle, this will allow you to transfer a complex genetic human disease into a Petri dish, and study it,” he says. “That could be the first step to analyze the disease and to define a therapy.”

Cristin Carr | EurekAlert!
Further information:
http://www.wi.mit.edu

Further reports about: B cells DNA Fibroblast IPS differentiated immature reprogrammed

More articles from Life Sciences:

nachricht New image of a cancer-related enzyme in action helps explain gene regulation
05.06.2020 | Penn State

nachricht Protecting the Neuronal Architecture
05.06.2020 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Restoring vision by gene therapy

Latest scientific findings give hope for people with incurable retinal degeneration

Humans rely dominantly on their eyesight. Losing vision means not being able to read, recognize faces or find objects. Macular degeneration is one of the major...

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New image of a cancer-related enzyme in action helps explain gene regulation

05.06.2020 | Life Sciences

Silicon 'neurons' may add a new dimension to computer processors

05.06.2020 | Physics and Astronomy

Protecting the Neuronal Architecture

05.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>