Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World-first discovery could help treat life-threatening tumors

18.04.2008
WA researchers investigating how blood vessel growth keeps cancers alive have made a world-first discovery that could boost the chances of successfully treating life-threatening tumours.

Western Australian Institute for Medical Research (WAIMR) Associate Professor Ruth Ganss and her team have found that a gene called RGS5 can reverse angiogenesis – the growth of blood vessels inside the tumour.

The discovery is published in the most recent edition of Nature, one of the world’s most prestigious scientific journals.

“It’s the uncontrolled growth of blood vessels and the formation of abnormal blood vessels inside tumours that ‘feed’ them, allowing them to grow and stopping the immune system from wiping out the tumour,” said Associate Professor Ganss.

“What we’ve shown is that RGS5 is a master gene in angiogenesis and that when it is removed, angiogenesis reverses and the blood vessels in tumours appear more normal.

“Importantly, this normalisation changes the tumour environment in a way that improves immune cell entry, meaning tumours can be destroyed and improving survival rates in laboratory tests.”

Reversing abnormal vessel growth represents a fresh approach to tackling angiogenesis, with most current research focusing on how to block or kill tumour-feeding blood vessels.

“We’ve long-suspected this research would deliver advances in knowledge about what impacts tumour growth and this publication recognises the innovation and importance of our work,” said Associate Professor Ganss.

“By understanding what is actually going on in the tumour itself, the ultimate hope is that we’ll be able to work on making current therapeutic approaches even more successful and reducing side effects of them.”

Associate Professor Ganss’ breakthrough comes after joining WAIMR from Heidelberg where she worked at the German Cancer Research Center. Last month, The Cancer Council Western Australia granted Associate Professor Ganss a Cancer Council Research Fellowship for continued work into tumour angiogenesis.

The majority of the discovery was funded by the National Health and Medical Research Council and part of the work was achieved using facilities at The University of WA based Centre for Microscopy, Characterisation and Analysis.

Earlier this month, a second paper by Associate Professor Ganss’ and her team was published in The Journal of Clinical Investigation which describes how tumours can be attacked by the immune system with fewer side-effects.

“This discovery involves targeting tumours with inflammatory substances that change the environment, so immune cells can attack the tumour through blood vessels more effectively and lessen the amount of toxins going elsewhere in the body,” Associate Professor Ganss said.

WAIMR Director Professor Peter Klinken praised Associate Professor Ganss’ team saying their work was serving to further put WA on the scientific world map.

“This breakthrough is one of the most significant discoveries to come out of WAIMR. The potential for this new knowledge to positively impact the lives of cancer patients in the future is very exciting,” he said.

“The fact that this breakthrough has come during our 10-year anniversary celebrations is just fantastic.”

Sarah Hayward | EurekAlert!
Further information:
http://www.researchaustralia.com.au/

Further reports about: Angiogenesis Associate Discovery Ganss blood vessel vessel

More articles from Life Sciences:

nachricht If Machines Could Smell ...
19.07.2019 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Algae-killing viruses spur nutrient recycling in oceans
18.07.2019 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>