Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST, Army researchers pave the way for anthrax spore standards

18.04.2008
Researchers from the National Institute of Standards and Technology (NIST) and the U.S. Army Dugway (Utah) Proving Ground have developed reliable methods based on DNA analysis to assess the concentration and viability of anthrax spores after prolonged storage. The techniques and data are essential steps in developing a reliable reference standard for anthrax detection and decontamination.

Bacillus anthracis, the bacterium that causes anthrax, has been a centuries-old threat to human health. In 2001, it was used as a letter-borne terrorist weapon that killed five Americans. Since the tenacious bacterium can survive for decades in a stable spore state, the Department of Homeland Security (DHS) has been working with NIST to develop anthrax spore reference materials. These materials could be used as controls in laboratory studies of anthrax, to calibrate spore detection equipment and to assess the efficiency of spore decontamination methods.

Because sample stability is a key requirement for reference materials, NIST and Army researchers recently compared different methods for measuring the concentration, biological activity and stability of laboratory-grade Bacillus anthracis spores under different storage conditions. Bacillus anthracis (Sterne), a harmless vaccine strain, was used in the study. The results of the research will be published in an upcoming issue of the Journal of Applied Microbiology.*

Working with samples that had been stored up to 2 1/2 years, the research team used two classic microbiological techniques to quantify the Bacillus anthracis concentrations: counting spores under a microscope and counting the bacterial colonies that grow after the spores are spread on a nutrient surface and germinate. The latter yields valuable data on the biological activity of the samples; however, only viable cells are counted and counts may be underestimated if cell clumping occurs. A better approach is to measure the amount of genetic material present in the sample. This method not only measures the DNA extracted from viable anthrax spores but also DNA in solution from damaged spores, cell debris and spore fragments—giving a truer measure of the source of DNA in the samples. Additionally, many of the new instruments available for rapid detection of anthrax spores are based on DNA markers, so it is important to accurately measure the DNA content of the reference samples that will be used to test and calibrate these devices.

... more about:
»Anthrax »Army »BACILLUS »DNA »Spore »anthracis »concentration

Traditional methods for extracting DNA from Bacillus anthracis spores are too harsh to produce material suitable for reliable measurements. To overcome this obstacle, the team developed an extraction technique that used chemicals and enzymes to disrupt intact spores into releasing their DNA in a relatively pure state.

The NIST-Army study showed that laboratory-grade Bacillus anthracis spores in suspension maintained their viability and did not clump when stored for up to 900 days. The classical method for counting spores yielded comparable results to the DNA measurements used to determine spore concentrations. The results demonstrate that research quality spores can be stored for long periods of time and still maintain their important properties, proving that uniform and consistent reference materials are possible.

* J.L. Almeida, B. Harper and K.D. Cole. Bacillus anthracis spore suspensions: determination of stability and comparison of enumeration techniques. Journal of Applied Microbiology, 2008.

Michael E. Newman | EurekAlert!
Further information:
http://www.nist.gov

Further reports about: Anthrax Army BACILLUS DNA Spore anthracis concentration

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>