Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are sacrificial bacteria altruistic or just unlucky?

16.04.2008
Genetic study finds chance helps determine fate of B. subtilis bacteria

An investigation of the genes that govern spore formation in the bacteria B. subtilis shows that chance plays a significant role in determining which of the microbes sacrifice themselves for the colony and which go on to form spores.

B. subtilis, a common soil bacteria, is a well-known survivor. When running short of food, it can alternatively band together in colonies or encase itself in a tough, protective spore to wait for better times. In fact, B. subtilis is so good at making spores that it's often used as a model organism by biologists who study bacterial spore formation.

"It's too early to say whether B. subtilis is truly altruistic," said co-author Oleg Igoshin, assistant professor of bioengineering at Rice University. "What is clear from this is that not all bacteria are going to look and act the same, and that's something that can be overlooked when people either study or attempt to control bacteria with population-wide approaches."

... more about:
»Igoshin »bacteria »colony »formation »subtilis

For example, Igoshin said doctors and food safety engineers might need to amend general approaches aimed at controlling bacteria with more targeted methods that also account for the uncharacteristic individual.

The new results appear in the April 15 issue of Molecular Systems Biology. The experimental work, which was done by Jan-Willem Veening, currently at Newcastle University, and by other members of Oscar Kuipers' research group at the University of Groningen in the Netherlands, focused on the B. subtilis genes that regulate both spore formation and the production cycles of two proteins -- subtilisin and bacillopeptidase. These two proteins help break apart dead cells and convert them into food. They are produced and released into the surrounding environment by B. subtilis cells that are running low on food.

From previous studies, scientists know there is some overlap between genes that control the production of the two proteins and those that control spore formation.

"Only a portion of the bacteria in a colony will form spores and only portion of the bacteria produce subtilisin, and we were interested in probing the genetic basis for this," Igoshin said. "How is it decided which cells become spores and which don't?"

Igoshin, a computational biologist, used computer simulations to help decipher and interpret the team's experimental results. He said the team found that fewer than 30 percent of individuals in a colony produce large quantities of the food-converting proteins. Even though the proteins benefit all members of the colony and help some cells to become spores, the cells that produce the proteins in bulk do not form spores themselves.

"There's a feedback loop, so that cells that start producing the proteins early get a reinforced signal to keep making them," Igoshin said. "We found that it's probabilistic events -- chance, if you will -- that dictates who is early and who is late. The early ones start working for the benefit of everyone while the later ones save valuable resources to ensure successful completion of sporulation program. Many cells will end up committing to sporulation before they had a chance to contribute to protease production"

Igoshin said a key piece of evidence confirming modeling predictions came in experiments that tracked genetically identical sister cells, some of which became protein producers and some of which didn't.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

Further reports about: Igoshin bacteria colony formation subtilis

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>