Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FISH probing applied to biofilm control in the paper industry

16.04.2008
A research team from the Universidad Complutense has developed a new microorganism identification technique that allows for a rapid detection of the most problematic bacteria for the paper industry.

A great majority of the paper factories, specially those producing recycled paper, suffer from biofouling in their installations. Such phenomena are caused by certain bacteria that form colonies. These microorganisms have the capacity to excrete diferent polysacharids that form a protective and adhesive matrix (biofilm) that allows the bacteria to attach to the surface of pipes, tanks and other equipment.

Once the initial attachment of the biofilm takes place, organic matter and other bacteria that lack the capacity to form a biofilm can anchor themselves to the formed colony. Biofilms can evolve into hardened crusts and create incrustations that are very hard to eliminate or can progressively free themselves from the original attachment site hindering both the process as well as the quality of the produced paper.

Traditionally, to avoid the formation of biofilms, wide spectrum biocides were used at different points through the process. Nevertheless, the toxicity of such agents, along with the development of resistance by some microorganisms, has forced the industry to seek new alternative treatments based on enzymes or biodispersants that have less environmental impact and are more specific in their action, affecting principally those species that are the main cause of the problems. In the paper industry, the main species of bacteria with capacity to form biofilms belong to the genus Enterobacter; the most common ones being Pantoea agglomerans, Enterobacter sp., Raoultella y Klebsiella sp.

... more about:
»Biofilm »microorganism

The cellulose and paper research group from the department of chemical engineering, working in collaboration with the department of microbiology (animal health) biochemistry and molecular biology at the Universidad Complutense, have developed and patented a new method to detect these bacterial species in the paper industry by means of a probe based on “in situ” hybridization (that does not require biofilms to be cultured) and fluorescent markers (FISH). This method is based on the selective reacction of a molecular marker designed to react by attaching to the specific DNA of a particular mircroorganism. Once attached, part of the marker molecule called fluorophor activates and produces fluorescence. By taking a microscopic image of the medium in wich the reaction takes place and procesing it digitally, it is posible to carry out reliable counting of the number of bacteria of each type that are present per unit volume of the sample. In this way, by knowing the bacterial species present in the installations and the concentration, antimicrobial treatments can be tailored for the detected flora and can be done so with a better adjusted dosage. The aplication of this technique in the paper industry would generate a reduction of the costs of maintaining the installations and greatly reduce the enviromental impact associated with the treatments that use biocides.

Recomended links
http://www.springerlink.com/content/100457/?Content+Status=Accepted&sort=p_OnlineDate&sortorder=desc&v=expanded&o=40

Área de Cultura Científica | alfa
Further information:
http://www.ucm.es

Further reports about: Biofilm microorganism

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>