Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

FISH probing applied to biofilm control in the paper industry

16.04.2008
A research team from the Universidad Complutense has developed a new microorganism identification technique that allows for a rapid detection of the most problematic bacteria for the paper industry.

A great majority of the paper factories, specially those producing recycled paper, suffer from biofouling in their installations. Such phenomena are caused by certain bacteria that form colonies. These microorganisms have the capacity to excrete diferent polysacharids that form a protective and adhesive matrix (biofilm) that allows the bacteria to attach to the surface of pipes, tanks and other equipment.

Once the initial attachment of the biofilm takes place, organic matter and other bacteria that lack the capacity to form a biofilm can anchor themselves to the formed colony. Biofilms can evolve into hardened crusts and create incrustations that are very hard to eliminate or can progressively free themselves from the original attachment site hindering both the process as well as the quality of the produced paper.

Traditionally, to avoid the formation of biofilms, wide spectrum biocides were used at different points through the process. Nevertheless, the toxicity of such agents, along with the development of resistance by some microorganisms, has forced the industry to seek new alternative treatments based on enzymes or biodispersants that have less environmental impact and are more specific in their action, affecting principally those species that are the main cause of the problems. In the paper industry, the main species of bacteria with capacity to form biofilms belong to the genus Enterobacter; the most common ones being Pantoea agglomerans, Enterobacter sp., Raoultella y Klebsiella sp.

... more about:
»Biofilm »microorganism

The cellulose and paper research group from the department of chemical engineering, working in collaboration with the department of microbiology (animal health) biochemistry and molecular biology at the Universidad Complutense, have developed and patented a new method to detect these bacterial species in the paper industry by means of a probe based on “in situ” hybridization (that does not require biofilms to be cultured) and fluorescent markers (FISH). This method is based on the selective reacction of a molecular marker designed to react by attaching to the specific DNA of a particular mircroorganism. Once attached, part of the marker molecule called fluorophor activates and produces fluorescence. By taking a microscopic image of the medium in wich the reaction takes place and procesing it digitally, it is posible to carry out reliable counting of the number of bacteria of each type that are present per unit volume of the sample. In this way, by knowing the bacterial species present in the installations and the concentration, antimicrobial treatments can be tailored for the detected flora and can be done so with a better adjusted dosage. The aplication of this technique in the paper industry would generate a reduction of the costs of maintaining the installations and greatly reduce the enviromental impact associated with the treatments that use biocides.

Recomended links
http://www.springerlink.com/content/100457/?Content+Status=Accepted&sort=p_OnlineDate&sortorder=desc&v=expanded&o=40

Área de Cultura Científica | alfa
Further information:
http://www.ucm.es

Further reports about: Biofilm microorganism

More articles from Life Sciences:

nachricht Something old, something new in the Ocean`s Blue
14.11.2019 | Max-Planck-Institut für Marine Mikrobiologie

nachricht AI-driven single blood cell classification: New method to support physicians in leukemia diagnostics
13.11.2019 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: Distorted Atoms

In two experiments performed at the free-electron laser FLASH in Hamburg a cooperation led by physicists from the Heidelberg Max Planck Institute for Nuclear physics (MPIK) demonstrated strongly-driven nonlinear interaction of ultrashort extreme-ultraviolet (XUV) laser pulses with atoms and ions. The powerful excitation of an electron pair in helium was found to compete with the ultrafast decay, which temporarily may even lead to population inversion. Resonant transitions in doubly charged neon ions were shifted in energy, and observed by XUV-XUV pump-probe transient absorption spectroscopy.

An international team led by physicists from the MPIK reports on new results for efficient two-electron excitations in helium driven by strong and ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

Smart lasers open up new applications and are the “tool of choice” in digitalization

30.10.2019 | Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

 
Latest News

New opportunities in additive manufacturing presented

14.11.2019 | Materials Sciences

Massive photons in an artificial magnetic field

14.11.2019 | Physics and Astronomy

Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)

14.11.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>