Human vascular system in mice

The formation of new blood vessels, or angiogenesis, is an Achilles’ heel of tumor growth, because tumors depend on the supply of oxygen and nutrients for survival. Therefore, for some years now substances called angiogenesis inhibitors have been used in cancer treatment to suppress this process. In order to advance this new research field, a team of researchers headed by Professor Hellmut Augustin has developed a method to create a complex human vascular system in mice, which stays functional even after several months.

The method is based on the observation that isolated cells of the vessel walls, called endothelial cells, congregate spontaneously in cell cultures to form aggregates known as spheroids. “Individual endothelial cells floating in suspension are doomed to die – the association in spheroids stabilizes them,” says Hellmut Augustin. The scientists Abdullah Alajati and Anna Laib have been able to inject such spheroids, embedded in a gel matrix, under the skin of mice and to stimulate the formation of a network of human blood vessels by means of growth factors. The mice were genetically modified in such a way that their immune system was unable to reject the foreign cells. “The newly formed blood vessels are made exclusively of human endothelial cells,” explains Anna Laib, a young researcher at the DKFZ. “At the matrix borders the human endothelial cells establish contact with those of the mouse. In this way, the transplanted human vasculature gets connected to the blood circulation of the mouse.”

The method provides experimental freedom and may deliver answers to various questions of vascular biology research. Scientists can genetically manipulate the endothelial cells before transplantation in order to investigate the formation of vascular networks. In addition, it is possible to test the effect of pharmacological substances; the Freiburg-based company ProQinase GmbH, which is involved in the study, is already conducting such experiments. “The method is even interesting for the production of artificial tissues,” Hellmut Augustin says. “So far, one difficulty with the use of artificial replacement tissues has been to create a functioning vascular system that sufficiently supplies the tissue constructs.”

Abdullah Alajati, Anna M Laib, Holger Weber, Anja M Boos, Arne Bartol, Kristian Ikenberg, Thomas Korff, Hanswalter Zentgraf, Cynthia Obodozie, RalphGraeser, Sven Christian, Günter Finkenzeller, G Björn Stark, Mélanie Héroult & Hellmut G Augustin: Spheroid-based engineering of a human vasculature in mice. Nature Methods, April 2008, DOI: 10.1038/nmeth.1198

Das Deutsche Krebsforschungszentrum hat die Aufgabe, die Mechanismen der Krebsentstehung systematisch zu untersuchen und Krebsrisikofaktoren zu erfassen. Die Ergebnisse dieser Grundlagenforschung sollen zu neuen Ansätzen in Vorbeugung, Diagnose und Therapie von Krebserkrankungen führen. Das Zentrum wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V.

Media Contact

Dr. Stefanie Seltmann EurekAlert!

More Information:

http://www.dkfz.de

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors