Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mayo Clinic identifies treatment target for liver cancer recurrence and survival

14.04.2008
Deadly and difficult to treat, liver cancer has long resisted attempts by researchers to develop ways to prolong life and prevent recurrence. But Mayo Clinic Cancer Center, in collaboration with the National Cancer Institute, reports in the April issue of Hepatology that the protein sulfatase 2 (SULF2) may provide one of the keys needed to begin the design of new therapies.

Mayo Clinic Cancer Center leads the field in researching the impact and effect of SULF1, a protein whose normal role is to degrade heparin sulfate proteoglycans -- molecules that are part sugar and part protein. Mayo scientists have found that the protein also helps inhibit tumor growth. Now, Mayo researchers are studying a related gene, SULF2.

The role of the SULF2 gene and protein has not been fully defined, but in this study, researchers investigated the effect of SULF2 on liver tumor growth in the laboratory. They found that increased expression of SULF2 enhances cancer cell growth and migration, whereas decreased expression reduces both.

“The liver is designed to excrete toxins, and its tumors are no exception,” says Mayo Clinic gastroenterologist Lewis Roberts, M.B.Ch.B., Ph.D., the study’s primary investigator. “Our problem is that the tumors tend to excrete chemotherapeutic agents rather than be affected by them. So we are looking for ways to get around that.”

... more about:
»SULF2 »Target »Treatment »factor »liver »sulfate

The researchers sought answers by examining a protein related to one they already knew had a role in suppressing liver tumors. SULF1 and SULF2 are similar proteins, but cause opposing results. SULF1 removes sulfate groups that allow growth factors to bind to cells, thus inhibiting growth. The investigators found that SULF2 did the opposite -- it increased binding of a specific growth factor, fibroblast growth factor 2 (FGF2), to tumor cells, and also increased expression of the heparan sulfate proteoglycan glypican 3 (GPC3), which plays an important role in cell division and growth. These findings were confirmed in mouse models.

This discovery indicates if scientists can decrease the levels or activity of SULF2 in a tumor, they might be able to stop its development. Mayo researchers are exploring use of an agent that mimics heparin and inhibits SULF2. They are also examining whether preventing heparin sulfate synthesis would inhibit tumor growth.

“If something has a very broad effect on signaling by growth factors, it may lead to an effective treatment,” says Jinping Lai, M.D., Ph.D., a Mayo oncology researcher and the lead author of the study. “SULF2 has a number of characteristics that make it an attractive target, such as the fact that it is widely present in tumors. We are exploring a number of options with SULF2 as a focal point for treatment not only in liver cancer, but also in head and neck, pancreas, breast and other types of cancer.”

The researchers hope to identify drugs that block SULF2, and seek to thoroughly understand the mechanisms involved, including the determination of what other growth signaling pathways are affected by SULF2. They are also looking further at GPC3 as a potential biomarker for liver cancer or as a possible therapeutic target.

In 2007, Dr. Lai presented information at the annual meeting of the American Association for Cancer Research on the role of SULF2 in survival of patients with head and neck cancer -- the first concrete link to survival of patients with a specific tumor type.

Elizabeth Zimmermann | EurekAlert!
Further information:
http://www.mayo.edu

Further reports about: SULF2 Target Treatment factor liver sulfate

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>