Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover 'modus operandi' of heart muscle protein

14.04.2008
Implications for cardiac development and health

Researchers at the University of Pennsylvania School of Medicine have discovered that a protein called leiomodin (Lmod) promotes the assembly of an important heart muscle protein called actin. What’s more, Lmod directs the assembly of actin to form the pumping unit of the heart. The findings appear in this week’s issue of Science.

“Very little was known about Lmod when we began this study,” says lead author Roberto Dominguez, PhD, Associate Professor of Physiology.

“It appeared that this protein was present in muscle cells but this had not been demonstrated directly and nobody knew what it did,” explains Dominguez. “We compared the amino acid sequence of Lmod with the sequence of another protein called tropomodulin [Tmod] that was already known to bind actin filaments in muscle cells. We found that one part of Lmod was very similar to Tmod, but Lmod was a bigger protein than Tmod and contained unique features that made us suspect that it could assemble the actin filaments of the heart muscle. This is exactly what we found.”

... more about:
»Control »Lmod »Muscle »actin »cardiac »filaments

The results answer a question that scientists studying the heart have long asked: What controls the assembly of the pumping unit of the heart?

Actin is the most abundant protein in most animal cells and forms long polymers, or filaments, that make up the cell skeleton. In the cells that make up muscles and the heart, interactions of actin filaments with motor proteins produce the contractions that pump blood through the body.

Actin spontaneously forms polymers in test tubes, but living cells use nucleator proteins to control the time and place where actin filaments forms. “For a long time, physiologists have wondered what serves as the nucleator protein in cardiac muscle cells,” says co-author Professor Thomas Pollard, PhD, of Yale University. “It was very satisfying after all these years to discover that Lmod can serve as the nucleator protein to initiate the forming of actin polymers in heart muscle cells.”

Lmod also directs actin filaments to the sarcomere, the part of the heart that controls contractions or pumping. When Lmod was knocked down in cardiac muscle cells by an RNA silencing technique, the sarcomeres became completely disorganized and could not direct muscles to contract.

Proper localization of Lmod in heart cells is critical, because even moderately elevated levels promote the formation of abnormal actin bundles in the nuclei of cardiac muscle cells where actin does not belong. A similar disorganization of actin bundles is characteristic of a disease of skeletal muscle weakness called intranuclear rod myopathy. Although this disease is caused by a mutation in a skeletal muscle-specific actin gene, the similarity in appearance suggests that mutations in Lmod could cause the same type of disease in cardiac muscle cells.

The Penn team is currently studying how the heart regulates the level of Lmod and how Lmod might be relevant to cardiac muscle disease. In addition, the team is attempting to crystallize Lmod in order to study its structure directly.

Malgorzata Boczkowska of Penn and David Chereau of Boston Biomedical Institute are co-first authors of this study. Other key contributors are Pekka Lappalainen and Aneta Skwarbek-Maruszewska of the University of Helsinki; Ikuko Fujiwara of Yale; David B. Hayes of Boston Biomedical Institute; and Grzegorz Rebowski of Penn. The study was supported by grants from the National Heart Lung and Blood Institute and the National Institute of General Medical Sciences.

PENN Medicine is a $3.5 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #3 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System includes three hospitals — its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation’s “Honor Roll” hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center — a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home care and hospice.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: Control Lmod Muscle actin cardiac filaments

More articles from Life Sciences:

nachricht Identifying the blind spots of soil biodiversity
04.08.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht AI & single-cell genomics
04.08.2020 | Helmholtz Zentrum München - German Research Center for Environmental Health

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

First radio detection of an extrasolar planetary system around a main-sequence star

04.08.2020 | Physics and Astronomy

The art of making tiny holes

04.08.2020 | Physics and Astronomy

Early Mars was covered in ice sheets, not flowing rivers

04.08.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>