Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insights into Cellular Death and the Aging Process

14.04.2008
Monitoring the Cellular Suicide Program
RUB Researchers find a new regulation mechanism

Protein researchers at the Ruhr University on the team from Junior Professors Dr. Clemens Steegborn and Dr. Dirk Wolters have clarified a complex safety mechanism that drives damaged cells to cell death when they can no longer be rescued. They identified on the one hand the part of Protein p66Shc that is responsible for a cell's suicide and they additionally ascertained the precise mechanism of its regulation.

In order for the self-destruction to be initiated, several protein components must work together as a complex. The complex can apparently be decomposed by the cell's repair mechanisms for precisely as long as the cell damages are reparable. Only when the cell is defective beyond repair does it perish. The researchers report on their work in the current issue of Proceedings of the National Academy of Sciences (PNAS).

Programmed Cell Death Provides Protection from Malfunctions and Diseases

... more about:
»Cellular »Regulation »Steegborn »Stress »apoptosis »p66Shc

The function and fate of a cell and subsequently also the functionality and lifespan of a complete organism are controlled by a complex network of signal proteins. Damages and malfunctions in this network are the cause of the aging process and a broad range of diseases which often occur more frequently with increasing age. One important protective mechanism against such malfunctions is programmed cell death, also known as apoptosis, by means of which heavily damaged cells decompose by themselves when their correct function is no longer assured.

Contributes to Arteriosclerosis and Age-Related Diabetes

Signal protein p66Shc functions as a molecular guardian and activates apoptosis as a solution to heavy cellular stress such as UV damage or toxic chemicals. "Mice in which the gene for p66Shc, which is closely related to the human equivalent, has been removed do in fact live some 30 % longer than normal mice, but the suspicion is that this gain in lifespan is achieved at the expense of correct function; i.e., that the organism is more susceptible to malfunctions due to cell damage", explains Dr. Steegborn. P66Shc plays a role in numerous aging-related diseases, for example arteriosclerosis or age-related diabetes. This makes the protein an interesting object for research, both in terms of the aging process and as a possible source of new medications. Despite its significance, the molecular mechanisms of p66Shc-induced apoptosis had nevertheless previously been insufficiently described.

Suicide Protein Under Strict Control

In their study, the Bochum-based researchers were initially able to identify the part of the p66Shc protein responsible for the apoptotic activity. It is a protein domain that produces hydrogen peroxide, a cell toxin, when amended with copper. "It is obvious that this toxic function of p66Shc must be subject to strict control", according to Dr. Steegborn. This is why for example the protein, after its activation, is transported into the mitochondria, the cell's power station, where it then initiates apoptosis.

Protective Mechanisms Can Break Down Stress and the Apoptosis Complex

The protein researchers were also able to explain an additional regulation mechanism: Activated by cellular stress, four p66Shc molecules form a stabile complex via Cystein-Cystein interactions . Only this complex can introduce the controlled cell death by causing the mitochondria to burst. The p66Shc activity can be arrested by the Glutathione and Thioredoxin cellular protective systems, which are capable of breaking down stress damages, substances that cause stress and the activated p66Shc complex. "p66Shc acts in this capacity as a stress sensor", explains Dr. Steegborn. "The cell's suicide program is apparently only started when these protective systems can no longer handle the cellular stress, and are subsequently also no long capable of deactivating p66Shc that has already been activated." These findings on the functionality and molecular regulation of p66Shc improve the understanding of the aging and disease process, and might in the future enable new approaches for intervention with effective agents.

Heading

Melanie Gertz; Frank Fischer; Dirk Wolters; Clemens Steegborn: Activation of the lifespan regulator p66Shc through reversible disulfide bond formation. In: PNAS, April 15, 2008 vol. 105, no. 15, 5705-5709

Additional Information

Junior Professor Dr. Clemens Steegborn, Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, 44780 Bochum, Germany Tel. +49-(0)234/32-27041, E-Mail: Clemens.Steegborn@rub.de

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/physiolchem/steegborn/

Further reports about: Cellular Regulation Steegborn Stress apoptosis p66Shc

More articles from Life Sciences:

nachricht In depression the brain region for stress control is larger
20.09.2018 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Interfacial engineering core@shell nanoparticles for active and selective direct H2O2 generation
19.09.2018 | Science China Press

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Glacial engineering could limit sea-level rise, if we get our emissions under control

20.09.2018 | Earth Sciences

Warning against hubris in CO2 removal

20.09.2018 | Earth Sciences

Halfway mark for NOEMA, the super-telescope under construction

20.09.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>