Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop strategy to rapidly describe outbreak strains with next-generation DNA sequencing

11.04.2008
In the event of an outbreak or a bioterrorist attack, rapid identification of the genetic changes responsible for virulence or drug resistance is essential to mounting an effective response.

Standard DNA sequencing and analysis of a pathogen genome is time-intensive and likely impractical during an emergency. Researchers have now developed a comparative genomics strategy to drastically reduce the time needed to accurately identify unique genetic properties of a potential outbreak strain. This report, which demonstrates the approach using next-generation sequencing technology, is published online today in Genome Research.

Sanger DNA sequencing, the established technology used to sequence the genomes of many species, including the genomes of humans and hundreds of bacteria, could potentially be used to sequence and analyze a new human pathogen. However, the time required for sequencing and subsequent analysis, or “finishing,” is such that this approach is not feasible when a rapid response to an outbreak or bioterrorist attack is required. New sequencing technologies are now available, allowing an entire bacterial genome to be sequenced in several hours, but time-intensive finishing steps are still required to determine the complete genome sequence.

In this study, researchers led by Drs. Bernard La Scola and Didier Raoult of the University of the Mediterranean set out to determine whether a rapidly sequenced incomplete genome could be used to quickly characterize an outbreak strain by comparative analysis. “In the context of an outbreak, a quick approach may help to identify immediately the genetic determinants responsible for modified virulence or transmission, explains La Scola. “The aim of this work was to evaluate the recently available automated pyrosequencing technology without finishing for this purpose.”

F. tularensis, the causative pathogen of tularemia, is one of the most infectious bacteria known, and there is particular concern that this organism could be manipulated for use as a biological weapon. La Scola and colleagues sequenced a strain isolated from a tularemia patient using the Roche/454 Life Sciences GS20 sequencing system, and compared these sequences with several other strains of F. tularensis, including a strain with reduced pathogencity and an antiobiotic-resistant strain.

The researchers demonstrated that next-generation sequencing of a bacterial genome without finishing could be used to effectively identify several unique features of the F. tularensis clinical strain in a matter of weeks. “By using this strategy, if there are a sufficient number of bioinformaticians working on the project, DNA extraction to complete analysis of the genome can take approximately 6 weeks,” describes La Scola. “We demonstrated that this strategy was efficient to detect gene polymorphisms such as a gene modification responsible for antibiotic resistance, and loss of genetic material.” Furthermore, La Scola and colleagues were able to distinguish the clinical strain from 80 other strains of F. tularensis.

While high-throughput sequencing technology and the comparative genomic analysis strategy outlined in this work have significantly decreased the time required for characterization of an outbreak strain, La Scola notes that future advances in software for sequence data analysis and genome comparison could speed up the process even further.

Scientists from the University of the Mediterranean (Marseilles, France) contributed to this study.

This work was supported by Sanofi-Aventis France, Bayer Pharma, and the European Commission.

Media contacts:

Bernard La Scola, M.D., Ph.D. (bernard.lascola@medecine.univ-mrs.fr; +33-4-91385517) and Didier Raoult, M.D., Ph.D. (didier.raoult@medecine.univ-mrs.fr, +33-4-91385517) have agreed to be contacted for more information.

Interested reporters may obtain copies of the manuscript from Peggy Calicchia, Editorial Secretary, Genome Research (calicchi@cshl.org; +1-516-422-4012).

About the article:

The manuscript will be published online ahead of print on April 11, 2008. Its full citation is as follows: La Scola, B., Elkarkouri, K., Li, W., Wahab, T., Fournous, G., Rolain, J., Biswas, S., Drancourt, M., Robert, C., Audic, S., Löfdahl, S., and Raoult, D. Rapid comparative genomic analysis for clinical microbiology: The Francisella tularensis paradigm. Genome Res. doi:10.1101/gr.7126608.

About Genome Research:

Genome Research (www.genome.org) is an international, continuously published, peer-reviewed journal published by Cold Spring Harbor Laboratory Press. Launched in 1995, it is one of the five most highly cited primary research journals in genetics and genomics.

About Cold Spring Harbor Laboratory Press:

Cold Spring Harbor Laboratory Press is an internationally renowned publisher of books, journals, and electronic media, located on Long Island, New York. It is a division of Cold Spring Harbor Laboratory, an innovator in life science research and the education of scientists, students, and the public. For more information, visit www.cshlpress.com.

Genome Research issues press releases to highlight significant research studies that are published in the journal.

Peggy Calicchia | EurekAlert!
Further information:
http://www.cshl.org
http://www.genome.org

Further reports about: Comparative DNA Genetic Genom Genome Scola Strategy genomic outbreak required strain tularensis

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>