Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Boston College biologists build a better mouse model for cancer research

11.04.2008
Cell line advance yields new finding on the role of defensive macrophage cells in cancer's spread

Researchers at Boston College have developed the first laboratory mouse model that mimics cancer’s spread through the human body. Using their novel cell line, the team discovered one of the body’s primary defensive cells plays a role in cancer’s attack.

The development of a new animal model – a line of cancer cells injected into a laboratory mouse – that displays the full spectrum of systemic metastatic cancer in humans removes a "scientific stumbling block" in advancing cancer research and potential treatments, according to Boston College Biologist Thomas Seyfried, whose findings appear this week in the online version of the International Journal of Cancer and will be presented at the annual meeting of the American Association of Cancer Research in San Diego.

"What we have developed is the first model in the mouse that replicates all of the hallmarks of metastatic cancer," said Seyfried, the project leader. “Now, we have a tool that can be effective in identifying basic mechanisms and new therapies to treat the disease.”

... more about:
»Line »Model »Seyfried »injected »macrophage »metastatic »spread

Researchers produced two cell lines that when injected into mice express all the major biological processes of metastasis. A third line, when injected, grew rapidly, but did not lead to metastatic cancer.

Previous mouse models contain limitations in effectiveness and speed. Many models fail to produce cancer in each animal subject and it often takes several months before cancer is detected. In other models, cancer cells are transplanted into animals with disabled immune systems. Within three weeks, the two Seyfried models produced tumors in 100 percent of the mice, which had healthy immune systems.

The cell line enabled researchers to make a new discovery about metastatic cells, namely that these cells express properties of macrophages, tissue cells that usually protect organisms against invading microbes in the environment and bacteria that lead to infection and disease.

"We show that the metastatic cells have macrophage properties," said doctoral researcher Leanne Huysentruyt, the lead author of the paper, who will present the findings April 13, when the American Association for Cancer Research meets. “Knowing this should allow for new types of therapies that target the macrophage-like cells.”

Metastasis, the spread of cancer from a primary site to other tissues and organs within the body, is the primary cause of death among cancer patients and remains largely unmanageable. Without an animal model that consistently reproduces human-like metastases, researchers have relied primarily on individual cancer patients to assess new therapies.

"The development of new drugs for cancer lags behind basic research," said Seyfried. "How can you cure a disease when you have no model system that replicates the disease except for the sick humans? It's almost as if each person who develops the disease is a guinea pig."

Seyfried said when a person has metastatic cancer, the macrophage-like tumor cells multiply and attack the body, system by system. Human metastatic cancers include breast, lung, colon and melanoma. When injected into mice, the metastatic cancer cells spread to other systems within three weeks.

"This will have an impact on how we view the role of macrophages in cancer progression," said Huysentruyt.

Seyfried’s research was funded, in part, by a grant from the American Institute of Cancer Research, which praised the findings.

"We are happy to be able to contribute to Dr. Seyfried's academic and professional progress," said Ivana Vucenik, a spokeswoman for the institute. "As a result of our support, Dr. Seyfried has made a major advance in this field."

Ed Hayward | EurekAlert!
Further information:
http://www.bc.edu

Further reports about: Line Model Seyfried injected macrophage metastatic spread

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>