Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells on path to becoming mature T-cells more flexible than commonly thought

11.04.2008
Findings may shed light on T-cell leukemias and immunodeficiencies

Contrary to the currently accepted model of T-cell development, researchers at the University of Pennsylvania School of Medicine have found that juvenile cells on their way to becoming mature immune cells can develop into either T cells or other blood-cell types versus only being committed to the T-cell path. The findings appear in this week’s issue of Nature, and have implications for better understanding how T-cell leukemias and other disorders arise.

“It is critically important to understand the life history of the T-cell lineage and to define the steps that multipotent progenitor cells take to mature to T cells,” says lead author Jeremiah Bell, PhD, Postdoctoral Fellow in the Department of Laboratory Medicine and Pathology. “Whether you’re trying to understand T-cell immunodeficiencies, T-cell cancers, or other T-cell-related disorders, you first need to know the steps in T-cell development, and the signals acting at each step.”

The life of a T cell, and all other blood cells, begins in the bone marrow as a hematopoietic stem cell (HSC). HSCs have the potential to become all the different types of cells in the blood, including red blood cells, platelets, white blood cells, and all the cells involved in defending the body against pathogens and foreign proteins. The first stage in the process leading to such diversity is for the HSCs to become the precursor cells called multipotent progenitor (MPPs) cells.

The accepted version of what happens next is that there is a fork in the road to becoming a mature blood cell. Each MPP commits to becoming either a precursor of red cells and non-lymphoid white blood cells (called the myeloid pathway) or a precursor of T and B cells (called the lymphoid pathway). The T-cell precursors then go to the thymus, a small organ located under the breastbone, where they are called early thymic progenitors (ETPs).

“If the currently accepted model of T-cell development is correct, then early thymic progenitors, the ETPs, should be able to make T cells, but unable to make myeloid cells,” explains senior author Avinash Bhandoola, PhD, Associate Professor of Pathology and Laboratory Medicine. “Jeremiah instead found that progenitor cells that make it to the thymus have not yet committed to either the myeloid or T-cell pathway.”

In order to determine the potential of ETPs, the team first had to separate ETPs from all the other cells in a mouse thymus. This was accomplished by sorting the cells based on surface tags that are characteristic of the ETP cell type.

Next, single ETP cells were painstakingly placed into culture so that each container received only one cell. “We really wanted to examine single cells,” says Bell. “Otherwise, even if you do see T cells and myeloid cells, you can’t be certain that they all came from the same progenitor cell.” After growing and dividing for several days, the cells from each container were examined, again by surface tags, to see whether T cells or myeloid cells were present.

To the surprise of Bell and Bhandoola, most of the cultures begun with single cells had become a mixture of T cells and myeloid cells. This means that the majority of early thymic progenitor cells do not commit to becoming T cells by the time they get to the thymus gland. ETP cells retained the ability to become either T cells or myeloid cells.

Since ETPs showed the potential to give rise to myeloid cell types, the team also asked whether some of the myeloid cells in the thymus normally arise from ETPs. The process of T-cell development in the thymus requires progenitor cells to rearrange pieces of DNA. This process of DNA rearrangement is required to build the antigen receptor used by T cells, and permanently marks ETPs. Bell and Bhandoola found that permanent marks of past DNA rearrangements were present in myeloid cells within the thymus, but not in myeloid cells at other sites. This showed that ETPs give rise to myeloid cells in the normal thymus. “It’s very hard to accommodate these data with our old way of thinking about T-cell development,” notes Bhandoola.

“Now, we want to understand how ETPs make the decision to become myeloid cells or T cells within the thymus,” says Bell. “Although our research is focused on basic science, it is relevant to figuring out how T-cell leukemias develop from early progenitor cells.”

“We’re also wondering about the myeloid cells in the thymus that arise from ETPs,” adds Bhandoola. “Are they doing something we need to know about, and what could that be?”

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

Further reports about: Bhandoola Development ETP HSC MATURE Precursor T cells Thymus blood cells myeloid progenitor

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>