Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yeast in an Egg Shell

10.04.2008
Artificial mineral coat helps yeast cells to have a longer life and new properties

Nature’s eggshells have inspired Chinese researchers: A team led by Ruikang Tang at Zhejiang University have successfully equipped living yeast cells with an artificial mineral coating. As reported in the journal Angewandte Chemie, the hard inorganic shells protect the cells, allowing them to survive longer storage times. By incorporating iron oxide particles into the shells the researchers were also able to make them magnetic.

Our breakfast egg is an anomaly of nature; a single cell protected by a thin mineral layer. With the exception of some tiny amoebas and diatoms, individual cells do not normally have a hard shell. The Chinese researchers have now developed a strategy to equip cells of baker’s yeast, Saccharomyces cerevisiae, with an artificial shell of calcium phosphate. First, a synthetic polymer, such as a polyacrylate, is attached to the cell walls of the yeast cells. The negatively charged carboxylate groups (COO–) of the polymer stick out into the surrounding calcium phosphate containing solution. Positively charged calcium ions from the medium bind to the carboxylate groups and attract the negatively charged phosphate ions to form nuclei for the growth of calcium phosphates. In the course of the mineralization process, the yeast cells are completely encapsulated by an inorganic layer.

Yet the cells remain viable. They enter into a resting state, in which they even survive a lack of the nutrients normally used for yeast storage. With their shells, the yeast cells last much longer; whereas a maximum of 20 % of yeast cells are normally viable after a month, 85 % of the cells with shells last that long. In addition, the shell protects the cells from unfavorable external conditions, even the attack of enzymes that break up cell walls. When the shell is dismantled by lightly acidic conditions or ultrasound, the yeast cells resume their normal cell cycle.

... more about:
»phosphate »yeast

Genetically modified yeasts are also used to produce important pharmaceutical agents, such as interferon and insulin, as well as vaccines. In molecular biology research, easily cultivated yeasts are often used for basic investigations of cellular processes and for the diagnosis of human diseases. The protection and improved shelf life provided by the shell could increase their potential in this field. In addition, the shell can act as a scaffold for chemical and biological property modifications. The team was thus able to produce magnetic yeast cells by the inclusion of iron oxide nanoparticles in the shell.

Author: Ruikang Tang, Zhejiang University, Hangzhou (China), http://www.chem.zju.edu.cn/en/teacher.asp?Num=192

Title: Yeast Cells with an Artificial Mineral Shell: Protection and Modification of Living Cells by Biomimetic Mineralization

Angewandte Chemie International Edition, doi: 10.1002/anie.200704718

Ruikang Tang | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.chem.zju.edu.cn/en/teacher.asp?Num=192

Further reports about: phosphate yeast

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>