Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient DNA: reconstruction of the biological history of Aldaieta necropolis

08.04.2008
A research team from the Department of Genetics, Physical Anthropology & Animal Physiology in the Faculty of Science and Technology at the Leioa campus of the University of the Basque Country (UPV/EHU), and led by Ms Concepción de la Rúa, has reconstructed the history of the evolution of human population and answered questions about history, using DNA extracted from skeleton remains.

Knowing the history of past populations and answering unresolved questions about them is highly interesting, more so when the information is obtained from the extraction of genetic material from historical remains. An example is the necropolis at Aldaieta (Araba) where some of these mysteries about these peoples have been answered – thanks to the study of their DNA.

Aldaieta brings together certain important features which make this site a prime archaeological and historical record and its conservation an important task of restoration and study. In this vein, the Department of Genetics, Physical Anthropology & Animal Physiology in the Faculty of Science and Technology at the University of the Basque Country (UPV/EHU), has undertaken a study of DNA in the necropolis at Aldaieta (Araba).

The researchers at the UPV/EHU have been studying the genetic material of ancient remains, extracted both from bones and teeth, in order to interpret the biological and social meaning of this necropolis. The study of ancient DNA is a field in which laboratory work is enormous for a number of reasons. On the one hand, in comparison with modern or current DNA, that extracted from the bones and teeth is quite degraded and is in very small quantities. As a consequence, the risk of contamination is high. This is why, at all times the results obtained have to be authenticate and it has to be demonstrated that they are not due to contamination or handling/manipulation, but have genuinely been obtained from the samples.

... more about:
»Aldaieta »DNA »Genetic »mitochondrial »necropolis »remains

The research work began with the extraction and subsequent analysis of DNA from the ancient remains (normally by the sequencing of mitochondrial DNA, a molecule inherited maternally) of each individual and in duplicate. Moreover, a third copy of the sample from each individual was sent to another laboratory and. finally, they compare all of them in order to distinguish between what is endogenous from what is the result of handling. Obviously, the results obtained from the same sample/individual have to tally in all the analyses in order to be reliable.

Interpretation of the settlement at Aldaieta

Despite the problems inherent working with ancient DNA, the methodology drawn up for the current work as well as the precautions and criteria of authentication undertaken have enabled reliable and verifiable results of the population buried at Aldaieta to be obtained.

Within the great homogeneity of the mitochondrial lines on the European continent, the genetic substrate of the population buried at Aldaieta falls within the variability of that expressed by current populations on the Cantabrian coast and Atlantic axis, thereby indicating the existence of genic flow between these human groups in ancient times.

Besides the characterisation of the mitochondrial genome, they have carried out the characterisation of the chromosome Y, using techniques focused on ancient DNA, an have shown the existence of family relationships within the necropolis, given that certain mitochondrial lines have a particular distribution, the grouping of individuals belonging to the same line having been discovered at nearby burial sites. Besides, there exists a significant differentiation gender wise, men having qualitatively and quantitatively more important funerary artefacts than women.

It is clear that the genetic analysis of skeleton remains, despite the labour-intensive work involved and the problem of authenticity of the results, has provided an essential contribution in the reconstruction of the biological history of human populations.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1690&hizk=I

Further reports about: Aldaieta DNA Genetic mitochondrial necropolis remains

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>